
High Accuracy Failure Injection in Parallel and Distributed
Systems Using Virtualization

Thomas Hérault
Univ Paris Sud; LRI; INRIA;

F-91405 Orsay France
thomas.herault@lri.fr

Thomas Largillier
Univ Paris Sud; LRI; INRIA;

F-91405 Orsay France
thomas.largillier@lri.fr

Sylvain Peyronnet
Univ Paris Sud; LRI; INRIA;

F-91405 Orsay France
sylvain.peyronnet@lri.fr

Benjamin Quétier
Univ Paris Sud; LRI; INRIA;

F-91405 Orsay France
benjamin.quetier@lri.fr

Franck Cappello
INRIA;

F-91893 Orsay France
fci@lri.fr

Mathieu Jan
CEA; LIST; F-91191 Saclay,

France
mathieu.jan@cea.fr

ABSTRACT
Emulation sits between simulation and experimentation to
complete the set of tools available for software designers to
evaluate their software and predict behavior under condi-
tions usually unachievable in a laboratory experiment. It
consists in running the real application in an emulated envi-
ronment. Thus, it behaves more realistically than a simula-
tion, but under a controlled and reproducible environment,
more suitable for behavior analysis.

In this paper, we propose an emulation platform for par-
allel and distributed systems where both the machines and
the network are virtualized at a low level. We demonstrate
that the use of virtual machines allows us to test highly
accurate failure injection by “destroying” virtual machines.
Failure accuracy is a criteria that demonstrates how realistic
a fault is. The platform accuracy is evaluated using Pastry,
a fault-tolerant distributed hash-table.

Categories and Subject Descriptors
C.2.4 [Distributed systems]: Distributed applications; C.4
[Performance of systems]: Fault tolerance

General Terms
Experimentation reliability measurement

1. INTRODUCTION
One of the most important issue for the evaluation of a

parallel or distributed application is to monitor and control
the experimental conditions under which this evaluation is
done. This is particularly important when it comes to re-
producibility and analysis of observed behavior.

In general, experimental conditions are not strictly repro-
ducible in the real world. The approach usually taken to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’09, May 18–20, 2009, Ischia, Italy.
Copyright 2009 ACM 978-1-60558-413-3/09/05 ...$5.00.

broaden the scope of the evaluation consists in designing
simulators, under which the experimental conditions can be
as diverse as necessary. The “real world” experiments can
then help to validate the results given by simulators under
the reproduced similar conditions.

Still, simulators can only handle a model of the applica-
tion, and it is hard to validate an implementation, or guar-
antee that the end user application will meet the predicted
performance and behavior. Here, we study another tool for
experimentations: emulators. Emulators are able to run the
final application, under emulated conditions.

Within an emulated environment, the experimenter can
inject experimental conditions that are not accessible in a
real environment, or not controlled. A typical example of
such condition is the apparition of hardware failures during
the experiment. With a real system, although they can hap-
pen undeterministically, hardware failures are hard to inject,
and hard to reproduce. In an emulated environment, hard-
ware is software-controlled and the experimenter can design
a reproducible scenario of fault injection to stress fault tol-
erant applications.

A promising approach for emulators is the use of virtual
machines (VM). A VM by itself fits partially the goals of
parallel application emulators, since it emulates instances of
a virtual hardware on a single machine. In addition to these
virtual machines, we need to link them through a control-
lable network. In this paper, we present V-DS, a platform
for the emulation of parallel and distributed systems (V-DS
stands for Virtual Distributed System) through virtualiza-
tion of the machines and the network.

2. RELATED WORK
Recently, the number of large-scale distributed infrastruc-

tures has grown. However, these infrastructures usually fall
either into the category of production infrastructures, such
as EGEE 1 or DEISA [9], or in the category of research
infrastructures, such as PlanetLab [6].

For instance, PlanetLab [6] is a testbed featuring nodes
connected over the Internet, and software reconfiguration for
experiments. However, Planetlab lacks means to control ex-
perimental conditions. Consequently, it may be difficult to
apply results obtained on PlanetLab to other environments,
as pointed out by [7]. Emulab [16] is an emulation platform

1http://www.eu-egee.org/

that offers large-scale virtualization and low-level network
emulation. However, this project focuses only on the full re-
configuration of the network stack. Moreover, Emulab uses
extended FreeBSD jails as virtual machines. Inside jails, the
operating system is shared between the real machine and the
virtual machine, thus killing a virtual machine is the same
as killing a process, which has a significant impact on the
possible behaviors, as we demonstrate in the experiment sec-
tion. To the best of our knowledge, Grid’5000 [3] is the only
platform that provides tools to reconfigure the full software
stack between the hardware and the user on all processors,
and reservation capabilities to ensure controllable network
conditions during the experiments. However, much work re-
mains to be carried out for injecting or saving, in an accurate
and automatic manner, experimental conditions in order to
reproduce experiments.

Software environments for enabling large-scale evaluations
most closely related to ours are [2] and [10]. An example
of integrated environment for performing large-scale exper-
iments, via emulation, of P2P protocols inside a cluster can
be found in [2]. This work concentrates on evaluating the
overhead of the framework itself and not on demonstrating
its strength. In addition, the project provides a basic and
specific API suited for P2P systems only. P2PLab [10] is an-
other environment for performing P2P experiments at large-
scale in a (network) controlled environment, through the use
of Dummynet [12]. However, as for the previously mentioned
project [2], it relies on the operating system scheduler to run
several peers per physical node, leading to CPU time unfair-
ness. Modelnet [15] is also based on Dummynet: it uses the
same scheme except that the nodes that control the network
are different from the computing nodes.

3. V-DS PLATFORM DESCRIPTION
The V-DS virtualization environment is composed of two

distinct components: the virtualization environment for large-
scale distributed systems and a BSD-module for the low-
level network virtualization.

3.1 Virtualization environment for large-scale
Distributed Systems

V-DS virtualizes distributed systems entities, at both op-
erating system and network level. This is done by providing
each virtual node its proper and confined operating system
and execution environment.

V-DS supports three key requirements:
Scalability : In order to provide insights on large-scale dis-

tributed systems, V-DS supports the folding of distributed
systems.
Accuracy : In order to obtain accurate behavior of a large-
scale distributed system several constraints on the virtual
machines (VMs) are needed. Using Xen allows V-DS to en-
sure all these requirements (see for example [11]).
Adaptivity : the platform provides a custom and optimized
view of the physical infrastructure used.

V-DS is based on the Xen [1] virtualization tool (version
3.2). Compared to other virtualization technologies it has
been demonstrated that Xen offers better results (see [11]).

Figure 1 shows the general architecture of V-DS.All com-
munications between these VM are routed to FreeBSD ma-
chines to 1) prevent them from communicating directly through

nodes
Virtual

Physical
node

...
...

...

Optionnal

VM−1−n

VM−1−1

PM−1

VM−m−1

VM−m−n

PM−m

Experiments network

FreeBSD

FreeBSD

Dummynet
nodes

FreeBSD

FreeBSD

Administration network

Ethernet
Switch

Figure 1: Overview of the architecture of V-DS.

the internal network if they are on the same physical ma-
chine, 2) add network topologies between VM.

3.2 Low-level network virtualization
One of the main advantages of the V-DS platform is that

it also uses virtualization techniques for emulating the net-
work. This allows the experimenter to emulate any kind of
topology with various values for latency and bandwith on a
cluster.

For the purpose of emulating the network, we use FreeBSD
machines which contains several efficient tools to manipulate
packages like ipfw2 or Dummynet [12]. The platform is then
capable of injecting realistic failures at the machine and net-
work level.

There are three networks joining the virtual machines.
The first is a classic ethernet network. Each virtual ma-
chine has its own virtual ethernet card. The second one
uses Myrinet cards and provides very fast links between the
nodes. The last one offers layer 2 virtualization using the
EtherIP protocol [8]. EtherIP bridges are set between any
virtual machine and the corresponding BSD machine.

The topology is given by the user in a dot format3 file
which is easy to manipulate and to write.

Using this topology file, we generate the routing table of
each BSD machine. The routing is made through a ker-
nel module. More precisely it is a netgraph4 node called
“ip switch”.

4. EXPERIMENTS
In this section we present the experiments we perform in

order to assess the performances and functionalities of our
virtualization framework. All these experiments were done
on the Grid’5000 [3] platform. For our experiments we used
a 312-node homogeneous cluster composed of AMD Opteron
248 (2.2 GHz/1MB L2 cache). Each node feature 20GB
of swap and SATA hard drive. Nodes are interconnected
through a Gigabit Ethernet switch. All our experiments
were performed using a folding ratio of 10 (e.g. each physical
node runs 10 virtual machines).

2http://www.freebsd.org/doc/en/books/handbook/firewalls-
ipfw.html
3http://www.graphviz.org/doc/info/lang.html
4http://people.freebsd.org/̃julian/netgraph.html

All the following experiments used Xen version 3.2, with
Linux-2.6.18.8 for the physical and virtual computing nodes,
and BSD version 7-0PRERELEASE for the network emula-
tion.We chose the 1.5.0 10-eval version of the Java VM that
fulfilled our needs and our space requirements.

4.1 Impact of the Low-Level Network Emula-
tion

We first measured the impact of the network emulation of
V-DS on the network bandwidth and latency, using the net-
perf tool [14]. We used two versions of V-DS: with network
emulation at high level only, and with low-level network em-
ulation, as described in section 3.

The experimental setup consisted in three physical ma-
chines: one running the BSD router, the other two running
one virtual machine each. We configured the BSD router
according to the restraints on the network we wanted to
study.

Regarding the latency, we obtained in both cases the re-
quested values (from 10ms to 500ms).

For the bandwith restraints, the requested values range
between 256Kbps and 250Mbps. The values we obtained
without the low-level network emulation are very close to
the requested ones since the lost is around 3%. Another 3%
is lost when adding the low-level network emulation.

4.2 Stress of Fault-Tolerant Applications
In order to evaluate the platform capabilities to inject fail-

ures, we stressed FreePastry which is an open-source Java
implementation of Pastry [13, 4] intended for deployment
over the Internet. Pastry is a fault-tolerant peer-to-peer pro-
tocol implementing distributed hash-tables. In Pastry every
node has a unique identifier which is 128 bits long.This iden-
tifier is used to position the node on a 2128-places oriented
ring.

When a node is joining an existing ring, it gets a node
Id and initializes its leaf set and routing table by finding a
“close” node according to a proximity metric. Then it asks
this node to route a special message with its identifier as a
key. The node at the end of the path is the one with the
closest identifier and then the new node takes its leaf set
and is routing table is updated with information gathered
along the path. The new node will then send messages in the
pastry network to update the routing table of all processes
it should be connected to.

Pastry manages nodes failures as nodes departures with-
out notification. In order to handle this kind of situation
“neighbors” (nodes which are in each others leaf set) ex-
change keepalive messages. If a node is still not responding
after a period T, it is declared failed and everyone in its leaf
set is informed. The routing table of all processes that the
departing process was connected to are then updated. At
some point, the routes stop changing (they are stabilized),
but the maintaining procedures for these routes continue to
execute.

To validate the platform we proceeded as follows. First
we evaluated the average time for the system to stabilize
itself after all the peers had joined the network. Then we
evaluated the average time needed for every node to know
that a node was shut down or killed. In the first case we
only kill a java process and in the second we “destroy” the
virtual machine which is hosting the process.

The experiments go as follows. The first virtual machine

(called the bootstrap node) creates a new ring and then
every other virtual machine connects to it. We ask every
node for its routing table every 200ms and log it whenever
it changes together with a time stamp.

In order not to overwhelm the bootstrap node, we launch
machines by groups of tens separated by a 1 second interval.
Results for the first experiment are presented in figure 2.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 10 100 1000 10000 100000

Av
er

ag
e

op
er

at
io

ns
 b

y
m

ac
hi

ne
s

le
ft

time in seconds

50 machines
100 machines
400 machines

Figure 2: Average number of changes left by ma-
chine

It can be seen that even for small rings, composed of as few
as 50 machines out of a possible 2128, the time for the system
to stabilize is large (over 5 hours). This time increases with
the numbers of machines and can still be over 18h for a ring
as small as 400 machines.

To reduce the duration of the experiments, we made use of
the fact that a majority of changes in the routing tables are
made in the first few seconds of initialization. It appears
that after only 100s more than 50% of the changes have
been made. Thus we do not wait for the whole system to
be stabilized before injecting the first failure, but we wait
for the whole system to have made enough changes in the
routing tables and for it to be in a relatively steady state.
Thus, the failure is injected 45min after the beginning of the
experiment.

We call D-node the node we suppress from the ring, ei-
ther by killing the process or destroying the machine. After
suppressing the D-node we wait for 20 min for the nodes to
update their routing tables. After this period we collect the
routing tables and look for those which include the D-node.
In those particular tables we search for the update that will
make the D-node disappear from the routing table.

Each dot in figure 3 represents the update of the routing
table of process y, at a time x, concerning the D-node. The
“cross” dots represent the modifications before the failure is
injected, thus the modifications due to the normal stabiliza-
tion of FreePastry. The “plus” dots represent the modifica-
tions after the injection of the failure for the D-node in the
case of process kill, and the last dots depict the case of vir-
tual host destruction. The vertical line represents the date
of the failure injection at the D-node (45 minutes after the
beginning).

The set of routing tables that include the D-node consists
of 578 nodes over several experiments. In this set many
nodes delete the D-node of their routing table before it is
suppressed. As it can be seen on the figure, all these nodes

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 500 1000 1500 2000 2500 3000 3500 4000

m
ac

hi
ne

 n
um

be
r

time in seconds

After killing
Before suppression

After destruction

Figure 3: D-node deletion time

do it very early in the stabilization and therefore we can
consider that every node that deletes the D-node from its
table after the suppression time does it thanks to the failure
detection component of Pastry.

Since the routing table maintenance is done lazily in Pas-
try [5], it is natural that not every node updates its routing
table, since in the experiments no messages are exchanged.

When we only kill the pastry process to suppress the D-
node after 45 minutes we can see on figure 3 that a lot of
nodes react in a very short period of time to the suppres-
sion of the D-node. Comparing the points distributions for
kill and destruction, we can see that nodes detect the fail-
ure in a shorter period of time in the case of kill than in
the case of destruction. Since behaviors in the two cases
are different we can consider that “destroying” a machine is
more accurate since the stressed application must rely on its
own failure detection mechanism, and the behavior of this
application may be influenced by the asynchronism and the
timings of the failure detection mechanism used. The figure
also demonstrates that the active failure detection mecha-
nism of FreePastry is effective and the distributed hash table
is able to stabilize even with accurate failure injection.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented an emulation platform for

grids where both the machines and the network are virtu-
alized at a low level. This allows an experimenter to test
realistic failure injection into applications running on dis-
tributed architectures, such as grids. We evaluated the in-
terest of our approach by running a classical fault-tolerant
distributed application: Pastry.

We are in the process of developping a fault injection tool
to work with the platform. The interest of this work is
that using Xen virtual machines will allow to model strong
adversaries through virtual machines with shared memory.

Acknowledgements..
Experiments presented in this paper were carried out us-

ing the Grid’5000 experimental testbed, an initiative from
the French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS, RENATER and other con-
tributing partners.

6. REFERENCES
[1] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim

Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. SIGOPS Oper.
Syst. Rev., 37(5):164–177, 2003.

[2] Erik Buchmann and Klemens Böhm. How to run experiments
with large peer-to-peer data structures. Parallel and
Distributed Processing Symposium, International, 1:27b, 2004.

[3] Franck Cappello, Eddy Caron, Michel Dayde, Frederic Desprez,
Emmanuel Jeannot, Yvon Jegou, Stephane Lanteri, Julien
Leduc, Nouredine Melab, Guillaume Mornet, Raymond
Namyst, Pascale Primet, and Olivier Richard. Grid’5000: a
large scale, reconfigurable, controlable and monitorable Grid
platform. In SC’05: Proc. The 6th IEEE/ACM International
Workshop on Grid Computing Grid’2005, pages 99–106,
Seattle, USA, November 13-14 2005. IEEE/ACM.

[4] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony
Rowstron, and Dan S. Wallach. Security for structured
peer-to-peer overlay networks. In 5th Symposium on Operating
Systems Design and Implementaion (OSDI’02), December
2002.

[5] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony I. T.
Rowstron. Topology-aware routing in structured peer-to-peer
overlay networks. In André Schiper, Alexander A. Shvartsman,
Hakim Weatherspoon, and Ben Y. Zhao, editors, Future
Directions in Distributed Computing, volume 2584 of Lecture
Notes in Computer Science, pages 103–107. Springer, 2003.

[6] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier,
Larry Peterson, Mike Wawrzoniak, and Mic Bowman.
Planetlab: an overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3–12, 2003.

[7] Andreas Haeberlen, Alan Mislove, Ansley Post, and Peter
Druschel. Fallacies in evaluating decentralized systems. In In
Proceedings of IPTPS, 2006.

[8] R. Housley and S. Hollenbeck. EtherIP: Tunneling Ethernet
Frames in IP Datagrams. RFC 3378 (Informational), September
2002.

[9] Ralph Niederberger. DEISA: Motivations, strategies,
technologies. In Proc. of the Int. Supercomputer Conference
(ISC’04), 2004.

[10] Lucas Nussbaum and Olivier Richard. Lightweight emulation to
study peer-to-peer systems. Concurr. Comput. : Pract.
Exper., 20(6):735–749, 2008.

[11] Benjamin Quétier, Vincent Neri, and Franck Cappello.
Scalability Comparison of Four Host Virtualization Tools.
Journal of Grid Computing, 5:83–98, 2006.

[12] Luigi Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. SIGCOMM Comput. Commun. Rev.,
27(1):31–41, 1997.

[13] Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location and routing for large-scale
peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages
329–350, November 2001.

[14] Quinn O. Snell, Armin R. Mikler, and John L. Gustafson.
Netpipe: A network protocol independent performace evaluator.
In In Proceedings of the IASTED International Conference
on Intelligent Information Management and Systems, 1996.

[15] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan,
Dejan Kosti ’c, Jeff Chase, and David Becker. Scalability and
accuracy in a large-scale network emulator. In OSDI ’02:
Proceedings of the 5th symposium on Operating systems
design and i mplementation, pages 271–284, New York, NY,
USA, 2002. ACM Press.

[16] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi
Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and
Abhijeet Joglekar. An integrated experimental environment for
distributed systems and networks. SIGOPS Oper. Syst. Rev.,
36(SI):255–270, 2002.

