
Partial ranking of products for recommendation
systems

Sébastien Hémon, Thomas Largillier, and Sylvain Peyronnet

LRI; INRIA; Univ. Paris-Sud XI; 91405 Orsay, France

Abstract. A recommendation system (or recommender) is an algorithm
whose goal is to recommend products to potential users. To achieve its
task, it uses information about some user preferences.
We present recommenders that use information about the preferences of
only a very small subset of users (called a committee) on a very small
set of products called the witness products set. The main interest of our
approach compared to previous ones is that it needs substantially less
data for ensuring a very good quality of recommendation.

1 Introduction & related work

Recommendation systems aim to select products for a particular user from a
list shared by all (available products for instance) according to known previous
preferences of users. There are essentially two ways to recommend products. One
consists in learning the preferences of a particular user based on the products
(s)he liked before and recommending products similar to these ones (content
based approach, see [1]). The other approach consists in recommending products
to someone by choosing products that have been liked by users that seem to have
the same preferences as the person to recommend (collaborative filtering, see [2]).

We propose a recommender that follows the collaborative filtering paradigm.
Our algorithm recommends to a particular user a product that will be in the set
of its favorite products with high probability. Such recommendations are done
according to a categorization of users into equivalence classes with respect to the
relation “having the same preferred products”. Our algorithm is original since
it produces a good recommendation with high probability without knowing the
exact rating of each product by each user.

Most of the collaborative filtering work relies on an analysis of users’ pref-
erences that take their values in a continuous space (see [3, 2, 4]). In these
papers, recommenders are based on the assumption that users can be catego-
rized in classes that strongly differ one from each other. In [5], Kleinberg et al
use mixture models to make a good recommender. In [6], the authors made a
first attempt to design recommenders that are not based on specific assumptions
about the internal behavior of a committee (a small set of users that rate a lot of
products). Meanwhile, preferences need to be binary values. They are interpreted
as ”good” or ”bad”. This assumptions is clearly a drawback since the behavior
of customers do not generally obey to such separate agreements. Moreover, the

2 Sébastien Hémon, Thomas Largillier, and Sylvain Peyronnet

need for the committee to evaluate all products is required. Several papers agree
to consider such a need to be hardly reliable [3, 4, 2, 7, 6].

To the contrary, the essence of our method is to make user evaluate very few
products with small discrete rating scale and consider that a committee would
never be able to evaluate a large number of products. So our method does not
use a bound on the number of products and ask for a committee to rank only a
very small number of these products. It means that we do not need a rating of
products, a strong assumption used in [4, 8, 9]). While [4] asks for a strong gap
between user classes (to be said, orthogonality), we weaken this assumption by
asking for user classes to be sufficiently different.

The structure of the paper is the following. We present in section 2 our frame-
work. Section 3 sets the condition on products and users for the recommendation
system to work. Section 4 presents our recommenders. Last, section 5 shows the
effectiveness of our approach through a user satisfaction experiment.

2 Framework and principle of our method

2.1 Our framework : modeling of users and products

The goal of a recommendation system is to provide users with “good” products.
In this paper, we consider that users belong to a set U = {u1 · · ·um} of m distinct
users and that products come from P = {p1 · · · pn} a set of n distinct products.
We also suppose that we are given, even implicitly, a function f : U × P −→ R
that gives for every couple of user/product a utility ; f is then a so-called utility
function. We can now define a recommendation system as:

Definition 1. A recommendation system is a function R : U −→ Pr, where
Pr = {X ⊆ 2P , |X| = r}. Thus, for each user ui, R(ui) is a set of r products.

r is a fixed parameter (r = 5 in our experiments). Let Fr(ui)denotes the r
favorite products (according to f) of user ui, we have the following definition.

Definition 2. A good recommendation occurs when we have Fr(ui)∩R(ui) 6= ∅

Our goal is to obtain an algorithm that gave good recommendations.
For convenience, we summarize the utilities in a m×n matrix Mf such that

Mf (i, j) = f(ui, pj). We denote respectively by Mf (i, ?) and Mf (?, i) the ith

row and jth column of the matrix Mf .
In order to design recommenders, we are interested in top values of a given

row Mf (i, ?). These values corresponds to the favorite products of user ui. These
top values are given by an injective function rank : U × P −→ [n], where [n]
denotes the set {1, · · · , n} for n ∈ N. rank(ui, pj) is the index of pj in the
sorted (according to the values of f) list of products for user ui. For instance,
rank(u1, p2) = 3 means that p2 is the third preferred product of user u1.

Using the function rank we can define the notion of r−equivalence for users.

Definition 3. Two users ui and uj are said to be r-equivalent if and only if

Partial ranking of products for recommendation systems 3

∀p ∈ P rank(ui, p) ≤ r ⇐⇒ rank(uj , p) ≤ r
Intuitively, ui and uj are r-equivalent if they have the same r preferred

products (but not necessarily with the same order of preference).
We also define a function index : [n]× U −→ [n]. index(∗, ui) that indicates

the permutation that sort products according to their rank for ui. We then
define an equivalence relation ≡ps between users. It is called the product sorting

relation. Ũ denotes the quotient space of U by ≡ps.

Definition 4. Two users uk and ul are equivalent w.r.t. the relation ≡ps iff

∀i ≤ n index(i, uk) = index(i, ul).

In this case we write uk ≡ps ul.

If necessary, we use a m× n matrix S, called the sort table, such that S(i, j) =
index(j, ui). This will be only for the sake of clarity in the notations.

We are interested in good recommendations, so we need a notion of equiva-
lence between users that considers only the favorite products of a given user.

Definition 5. Let r < n, two users uk and ul are r-equivalent (that is have the
same r favorite products) if and only if :

∀i ≤ r ∃j ≤ r index(i, ul) = index(j, uk)

When this happens, we write uk ≡r ul. Moreover this is an equivalence relation.

This relation is important for the rest of the paper since our goal is to deal with
only a small numbers of products (here r) in order to give good recommendation.

Û denotes the quotient space of U by ≡r.

2.2 Principle of our method

We follow the modeling we just defined above. We want our recommendation
system to output a good recommendation of r products, where r is a very small
integer (typically r = 5 in our experiments). It is often admitted that, to get a
good recommendation, users follow some kind of behavior which can be viewed
as arbitrary distinct classes. In our method we made this natural and formal
using the notion of product sorting equivalence and r-equivalence. Thus, we do
not admit that users behave the same, exactly or modulo some randomized per-
turbations, but only tell that there is a model that, given a ranking of products
for each user, naturally sort users into equivalence classes. In the following, we
will consider cases where both quotient sets Û and Ũ have small cardinality in
regards to both m and n (numbers of users and products).

All of our work was done according to two assumptions. The first is that
we have access to a few users who will rank a set of witness products and give
their r favorite products. These users are known as “the committee”. The second
assumption is that we are authorized to ask every people about these witness
products. This two hypothesis allow us to say that we use partial information in
order to make its recommendation. The main issue is then to understand what
should be the size of the committee, and how many witness products we need in
order to be able to provide a good recommendation to users.

4 Sébastien Hémon, Thomas Largillier, and Sylvain Peyronnet

Our recommender is described in Fig.1. We first choose a committee and
ask to each member of the committee to sort some products according to its
preferences. Then we choose a set of witness products and ask all users to sort
those products. Then we can cluster, with high confidence, users into equiva-
lence classes according to their products sorting. The given clustering will likely
attribute at least one member of the committee to each equivalence class. This
peculiar user will be used to make recommendations to members of its class.

In the following we note by C the committee (thus C ⊆ U) and by W the

witness products (W ⊆ P). As said previously, Û and Ũ are the quotient sets of

U with respect to, respectively, ≡r and ≡ps. Classes of Ũ (resp. Û) are denoted

by ũi (resp. ûi) for i ranging from 1 to |Ũ | (resp. |Û |). For the sake of clarity, we

use θ as a notation for the cardinal of Ũ and θi for the cardinal of class ũi.
The next section is devoted to the calculus of |C| and |W | in order to make

a good recommendation. Our goal is to find W and C such that the following
holds: let ui ∈ C and uj ∈ U . If ui ≡ps uj for products from W then ui ≡r uj
on U with high probability. Note that it implies that with high probability we
can have a good recommendation for uj by giving him the favorite of ui.

...

...

...

...

Witness
products

Co
m

m
itt

ee

Us
er

s

Products

User 1

User 2

favorite of user 1

should be one
of the favorite

 of user 2

Fig. 1. Principle of our method

3 Recommendation under partial information

We now address the problem of the size of both the committee and the set of wit-
ness products in order to provide good recommendations with high probability.
We first consider the problem of the size of the witness products set.

3.1 Cardinality of the witness products set

We consider that the relation between products is preserved, e.g. if a user prefers
product pi to product pj , he will provide a higher utility value for pi than for

Partial ranking of products for recommendation systems 5

pj . This only means that users always sort products the same way. This may
not be true that users evaluate utilities the same way, regardless of the proposed
products. Sorting information may look weaker than utility in order to perform
recommendations, but it is clearly more robust : context or even mood can
change the actual value of utility. A users does not have the will to be rigorous
but it will certainly keep its preferences. Thus, this is one of the assumption on
which we build our algorithm.

We now look at bounds for |W |, assuming that θ is the number of classes
of users, regarding the relation having same product sorting (≡ps). We start by
giving a combinatorial result (proof in appendix) which will ensure bounds for
our recommendation system to work:

Proposition 1 (sub-permutation). Let τ be a permutation over [n] and W
be a subset of [n] of cardinality |W |. There exists a unique sub-permutation τ |W
which is the one-to-one mapping from W to [|W |] that satisfies :

∀k, l ∈W τ |W (k) < τ |W (l)⇔ τ(k) < τ(l) (1)

Lemma 1. Let {τi; i ≤ θ} be a family of θ distinct permutations over [n]. To
distinguish all τi between them with their sub-permutations, using a single W ⊂
[n] of cardinality |W |, we need at most |W | = inf{n; 2(θ − 1)} elements.

Proof. The proof is in the appendix.

Observe that the proof of the lemma defines an algorithm which computes
the set W . Its time complexity is θ ·n, which is just the input size. This algorithm
is optimal among deterministic techniques. We will prove that we can get good
recommendations with high probability when taking less than 2(θ−1) products.

We now rephrase the two last results in term of recommendation :

Proposition 2. Let W ⊂ P be of cardinality |W | and Ũ = {ũ1, · · · , ũθ} be the
quotient set of U , w.r.t. having the same product sorting relationship, where
θ ≤ dn/2e. Suppose we are given Mf (li, ?) for at least one user uli ∈ Ti for
all i ≤ θ (or, which is enough, an ordering of all products by user uli). Then
we need at least |W | products in the witness products set in order to make good
recommendation to all users where |W | is such that (|W |)! ≥ θ and |W | ≤
2(θ − 1).

Proof. We prove the proposition in two steps.
Lower Bound : It is sufficient to note that when extracting the ordering of |W |
products for a user uj , the total number of possible different ordering is exactly
(|W |)!. Thus, it becomes clear that if θ is the number of different classes of users
among U , we obviously need |W | such that (|W |)! ≥ θ in order to distinguish all
different classes and, thus, making a good recommendation to uj .
Upper Bound : From Mf (li, ?)i≤θ, we can compute a family of functions
index(∗, uli). For a given li, the function index(∗, uli) can be seen as a per-
mutation over [n].
We can now use proposition 1. We need a subset of [n] of cardinality no more

6 Sébastien Hémon, Thomas Largillier, and Sylvain Peyronnet

than 2(θ − 1) to distinguish each of these θ permutations with their associated
sub-permutations. This means that we need |W | ≤ 2(θ − 1) products to make
every functions index(∗, uli) one different of each others.

Finding exactly the |W | products that fit with the lower bound may be a
very difficult task. If we choose these products uniformly at random they will
be unlikely to ensure to distinguish between classes. Then, it would certainly be
easier to choose more products for the witness products set in order to be able to
have enough information. The upper bound means that it is always possible to
make good recommendations, under condition that every class of user is known
via one of its representant, with at most 2(θ−1) known products per user. Thus,
we add to our recommender a specific algorithm to select products that every
people should evaluate.

Although we have these lower and upper bounds, we feel concerned with
finding the number of products needed in W in order to achieve a fast but good
recommendation. Proposition 3 below gives the solution.

Proposition 3. Let W ⊆ P a set of products and Ũ be as before. Suppose we
know for all i ≤ θ, Mf (li, ?) for at least one user uli such that uli ∈ ũi. Then

if we pick uniformly at random |W | = d
√
θe elements from P, we can correctly

sort, with high probability, every user in its class (e.g. equivalence class w.r.t.
the ≡ps relation) by looking the ordering of those |W | products for each user.

Proof. Let Dst be the event every Mf (li, ?)|W is distinct, when taking |W | ele-
ments from P with uniform distribution. This event can be observed as distin-
guishing each class from Ũ with |W | products. Hence, this means exactly that,
taking one user from each class as a witness of his class, we do not want two
distinct of these users to be represented asame (i.e. with the same ordering over
these |W | products). The probability of the event Dst is given by :

Pr[Dst] =

θ−1∏
i=0

(|W |)!− i
((|W |)!)

⇔ ln (Pr[Dst]) =

θ−1∑
i=0

ln

(
1− i

(|W |)!

)
Which leads to, using power series :

ln (Pr[Dst]) =

θ−1∑
i=0

∑
j≥1

(−1)j

j

(
i

(|W |)!

)j
=
−1

(|W |!)
∑
i<θ

i + o(1
(|W |)!)

Finally, we get: ln (Pr[Dst]) = θ−θ2
2(|W |)! + o(1

(|W |)!
), which leads to the approxima-

tion: Pr[Dst] ≈ e−
(|W |)4
2(|W |)! . This is close to 1, thus the proposition holds.

From now on, we know how much products we have to choose in our witness
products set in order to achieve good recommendation with high probability. We
now address the problem of the number of users that must be in the committee.

Partial ranking of products for recommendation systems 7

3.2 Cardinality of the committee

In order to cluster users into classes that depend on the product sorting equiv-
alence, we need a committee that will evaluate all products of the set W .

This committee is a subset C of U whose members must be chosen in a way
or an other. After choosing how we sample users for being in the committee,
we must evaluate how much of these users we need. As in the case of witness
products, it is easier to have people chosen uniformly at random. We should
then study the behavior of a recommendation system that pick users for its
committee with uniform distribution. We thus define the notion of good (e.g.
representative) committee.

Definition 6. A committee C is representative of U if and only if :
∀ũi ∈ Ũ , ∃u ∈ C such that u ∈ ũi

Our goal is then to pick enough users in order to have a representative com-
mittee, that is obtaining at least one member of each class of users (w.r.t. the
relation having same product sorting) with high probability.

We then have to evaluate the probability of getting one member of each of
such class when asking |C| users from U at random with uniform distribution,
where this last event will be written GC for Good Committee. It is given via the
probability of the opposite event (i.e. not having a representative committee) :

Pr[¬GC] =
∑θ
i=1

(
1− θi

m

)|C|
We recall that θi stands for the cardinal of class ũi and m = |U|.

We make some reasonable assumptions about θi and θ. It seems natural to
assume that θ � m, that is the number of classes, is small w.r.t. the number of
users. We also suppose that every class of users contains a non negligible number
of users. Formally, these facts can be expressed as θ = O(1) and θi = Θ(m) with
associated multiplicative constant qi < 1 for all i ≤ θ. That is θi = qi ·m. In the
following we consider, without loss of generality, that q1 < q2 < · · · < qθ so that
the size of the ũi is increasing with i.

These assumptions are reasonable since, in practice, we are not interested
in providing good recommendations to users that belong to not large enough
classes. Providing users in small classes with good recommendations will increase
massively the size of the committee only to satisfy few more users.

We can now compute the probability Pr[¬GC] , written ε from now on :

ε ≈
∑θ
i=1 (1− qi)|C| ≤ θ (1− q1)

|C|
= θe|C| ln(1−q1)

This can be equivalently written as :

ln
(
ε
θ

)
≤ |C| ln (1− qi)⇐⇒ |C| ≥ 1

q1
ln
(
θ
ε

)
Observe that, under our assumptions, we have q1 = Θ(1). It leads to :

|C| ≥ qθ ln
(
θ
ε

)
= O(θ ln(θ/ε))

We can now summarize this result into the following proposition :

Proposition 4. Suppose that θ = O(1) and θi = Θ(m) with associated multi-
plicative constant 0 < qi < 1 for all i ≤ θ. Then a committee C is representative
of U with probability (1− ε) if and only if |C| = O(θ ln(θ/ε))

8 Sébastien Hémon, Thomas Largillier, and Sylvain Peyronnet

Note that, here, θ is a constant, so |C| = O(ln(1/ε)). It means that the size of
the committee only depends on the targeted precision of the recommender.

4 Recommenders

In this section, we use the results of the previous sections to design a family of
recommendation systems. Each of these recommendation systems depends on
how we collect the information needed for initializing the algorithm.

We present here two of these algorithms, probably the most naturals that
can be constructed using our framework. First we present two different ways
to collect the informations that are needed by our algorithm. Please note that
θ, the number of equivalence classes of users w.r.t. the relation “having same
product sorting”, is a parameter of the two initialization process. The natural
question is then how to choose the value of this parameter in order to make the
algorithm usable ? In practice θ is a constant known via users’ polls. But if we
consider the more general case where θ = O(lnm), our algorithm is still efficient.

The first initialization process is used if one has only access to values of the
utility function for users from the committee C.

Initialization case 1
• Set C = {uhi

; i ≤ |C|} by picking |C| = qθ ln
(
θ
ε

)
= Θ(θ ln(θε) users from U .

• Set W by picking |W | = max(8 ; d
√
θe) products from P.

• For all uk ∈ C, Extract Fr(uk) from P.
• For all uk ∈ C, build the family of functions index|W (?, uk). This family is

represented as a restriction to C and W of the matrix S defined in subsection
2.1. We denote this matrix as SC,W

The second initialization process is used when the user of the recommender
can ask to committee members their r favorite products in P without rating all
products in P . In our practical experiment, we use this initialization method.

Initialization case 2
• Set C = {uhi

; i ≤ |C|} by picking |C| = qθ ln
(
θ
ε

)
= Θ(θ ln(θε) users from U .

• Set W by picking |W | = max(8 ; d
√
θe) products from P.

• Ask each user from C about his r favorite products. Build a |C| × r table
containing this information.

• Ask every member of the committee to sort products of W . Use this to build
the family of functions index|W (?, uk). This family is represented as a restric-
tion to C and W of the matrix S defined in subsection 2.1. We denote this
matrix as SC,W .

Note that SX,Y will denotes the restriction of S to users from X and products
from Y . Moreover, S(i, j) = index(j, ui). We now give the algorithm that uses
either initialization case 1 or 2.

Partial ranking of products for recommendation systems 9

Algorithm

Input : ui from U represented by its sorting on products from W . This can be
seen as a vector Vi =

(
index|W (1, ui), . . . , index|W (|W |, ui)

)
.

Output : The r-recommended products for ui.

Behavior :
1. Compute SC,W · Vi := tw(i)
2. Set J = {j ≤ |C| : w(i)j = maxl≤|W |{w(i)l}} where w(i) =

(w(i)1 · · ·w(i)|W |)
3. Take j0 ∈ J at random uniformly
4. Outputs the r favorite products of committee user uj0 corresponding to j0

th

row of matrix SC,W (This is Fr(uj0)).

For this algorithm, the following theorem holds :

Theorem 1. The above algorithm gives good recommendation to a given user

with probability at least 1− (ε+ η), where η = 1− e−
|W |4

2(|W |)! = o(1) and ε is such
that |C| = qθ ln

(
θ
ε

)
. Its time complexity is O(θ

√
θ ln

(
θ
ε

)
).

Proof. We have at least one user from each of the θ classes with probability (1−ε)
according to proposition 4. Let user ui be the input of our algorithm. As there
exists j ≤ θ so that user ui ∈ ũj , we get that user ui has a member of its class in
C with the same probability (1−ε). In this case, let us define ref(i) = C∩ũj . By

proposition 3, since |W | = d
√
θe, two users from different classes have different

corresponding rows in SC,W with probability e−
|W |4

2(|W |)! = 1− η.
Hence, there is a probability at least 1− (ε+ η) that the committee contains

at least one user from each class (i.e. the committee is representative) and that
its members have same representative in the matrix SC,W computed so that
SC,W (k, ?) = Vi if and only if user uhk

∈ ref(i). Thus, picking any of the user in
ref(i) will provide someone who share same product ordering as user ui so that
recommending his top r favorite products is a good recommendation for user
ui. It remains now to show that the set J is exactly ref(i). For this we use the
following lemma which is a direct application of the Cauchy-Schwarz inequality.

Lemma 2. Let τ and σ be permutations over [N], N ∈ N?. We have that∑N
i=1 τ(i) · σ(i) is maximum if, and only if, τ = σ.

Hence, since every row l in SU,W can be seen as the restriction of the index
function to the set W of witness products, this corresponds to enumerating every
image of a sub-permutation. Thus, the vector tw(i) consists of the scalar product
given by the previous lemma, so that w(i)k reaches its maximum if, and only if,
SC,W (k, ?) = Vi, permitting us to conclude.

The time complexity is in O(|C| · |W |) = O(θ
√
θ ln

(
θ
ε

)
). Computational

complexity for finding maximum coordinates of list w(i) and taking j0 at random
among corresponding indexes can be neglected because of the O.

10 Sébastien Hémon, Thomas Largillier, and Sylvain Peyronnet

With the previous theorem, we have a recommendation system for recom-
mending to one user a set of r products. We now see what happens if we use
this algorithm for making recommendations to all users of U .

Corollary 1. When adding a loop to the beginning of the algorithm in order to
make recommendation for every user in U , the time complexity of the algorithm
is O(m + n) when using initialization case 1 and O(m) when using case 2,
assuming that we both have |C| = O(1) and |W | = O(1). Thus, the fact that
every user gets a good recommendation happens with probability 1− (ε+ η).

5 Experiments
XXXXXXXgood

unknown 0 1 2 3 4 5
Rec Ran Rec Ran Rec Ran Rec Ran Rec Ran Rec Ran

0 0% 7% 1.1% 5.2% 1.3% 1.6% 4.7% 8% 22.2% 23.7% 100% 100%
1 4.3% 20.7% 5.7% 22.4% 16% 31.1% 16.3% 37.1% 77.8% 76.3% 0 0
2 19.1% 17.2% 14.8% 24.1% 20% 39.3% 79% 54.9% 0 0 0 0
3 23.4% 24.1% 33% 31% 62.7% 28% 0 0 0 0 0 0
4 19.1% 13.8% 45.4% 17.3% 0 0 0 0 0 0 0 0
5 34.1% 17.2% 0 0 0 0 0 0 0 0 0 0

Table 1. Percentage of recommendations regarding the number of good and unknown
recommended products

In order to validate the effectiveness of our approach we decided to make
an experiment with actual products and users.We selected from a set of 4400
movies, 160 of them uniformly at random. We then extract uniformly at random
from this data set 9 movies (our witness products set).

Our methodology was then the following. From the people that volunteer to
appear in the committee, we extract (at random) 20 of them. It was then asked,
through a web site, to the committee members to sort the 9 movies and then
to choose their 5 favorite movies in the data set (these 5 movies were called the
selection). We then asked as many people as possible to use our recommendation
engine to see if it is effective. 270 people have used it so far, the experiment
is ongoing so the presented results are only partial but still trustworthy. The
protocol was the following, first a user is asked to sort the 9 witness movies
and then we offer him two recommendations. The first one is provided by the
recommendation system presented in this paper and the second recommendation
is simply composed of 5 movies chosen uniformly at random in the data set. The
users are then asked two questions for each recommendation, how many films
do they like in the recommendation and how many films do they actually know
in the recommendation.
Fig.2. It shows the percentage of recommendations that contains at least a given
number of good recommended products (e.g. products liked by user). It first gives
the percentage of good recommendations (according to the definition 2). Our
method outperforms the random recommendation since we achieve a percentage
greater than 95% while the random recommendation only achieves less than
85%. Moreover, we can see that our recommender also provides higher order
good recommendations. On the other hand, random choices’ effectiveness drops
quickly and it often fails to provide users with more than 2 good products.

Partial ranking of products for recommendation systems 11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

>=1 >=2 >=3 >=4 5

Pe
rc

en
ta

ge
 o

f r
ec

om
m

en
da

tio
ns

Number of good recommended products

RecSys
Random choices

Fig. 2. Percentage of recommendations
containing at least x good products

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0 1 2 3 4 5

N
um

be
r o

f r
ec

om
m

en
da

tio
ns

Number of unknown recommended products

RecSys
Random choices

Fig. 3. Number of recommendations with
x unknown products

 0

 5

 10

 15

 20

 25

co
m01

co
m02

co
m03

co
m04

co
m05

co
m06

co
m07

co
m08

co
m09

co
m10

co
m11

co
m12

co
m13

co
m14

co
m15

co
m16

co
m17

co
m18

co
m19

co
m20

N
um

be
r o

f r
ec

om
m

en
da

tio
ns

Committee members

Fig. 4. Number of recommendations
made by each committee member

 0

 2

 4

 6

 8

 10

co
m01

co
m02

co
m03

co
m04

co
m05

co
m06

co
m07

co
m08

co
m09

co
m10

co
m11

co
m12

co
m13

co
m14

co
m15

co
m16

co
m17

co
m18

co
m19

co
m20

N
um

be
r o

f r
ec

om
m

en
da

tio
ns

Committee members

0 unknown product
1 unknown product

2 unknown products
3 unknown products
4 unknown products
5 unknown products

Fig. 5. Number of recommendations with
x unknown products made by each com-
mittee member

 0

 1

 2

 3

 4

 5

 6

 7

 8

co
m01

co
m02

co
m03

co
m04

co
m05

co
m06

co
m07

co
m08

co
m09

co
m10

co
m11

co
m12

co
m13

co
m14

co
m15

co
m16

co
m17

co
m18

co
m19

co
m20

N
um

be
r o

f r
ec

om
m

en
da

tio
ns

Committee members

0 good product
1 good product

2 good products
3 good products
4 good products
5 good products

Fig. 6. Number of good recommendations made by each committee member

Fig.3. It shows the number of recommendations w.r.t. the number of unknown
products recommended. A too large number (i.e. 4 or 5) of unknown products
seems to indicate a poor quality of recommendation since we are here dealing
with well known movies: if one does not know items recommended too him, it is
likely that they are in fact movies he did not want to see. It is also important to
note that if this number is too high it will decrease the user’s confidence in the
recommendation. We can clearly see on Fig.3 that this number decrease much
faster with our algorithm than with the random choices.
Table 1. We compare the “quality” of the recommendations made by both tech-
niques. Meaning we want to compare the number of good recommended products
w.r.t. the number of unknown products in the recommendation. The columns

12 Sébastien Hémon, Thomas Largillier, and Sylvain Peyronnet

are indexed by the number nu of unknown products in the recommendations
and the rows are indexed by the proportion of recommendations with ng good
products. We see that when (ng, nu) ∈ {(2, 3), (3, 2), (4, 1)} our algorithm out-
performs the random choices. These cases are interesting because they concern
good recommendations where (ng + nu = 5) ∧ (ng > 1) ∧ (nu < 5), thus the
user is confident in the recommendation (he liked all the movies he knows in the
recommendation) and will probably consult the unknown products.
Figs.4, 5 and 6. These figures consider each committee member separately.
We see in Fig.4 that most recommendations are given by only a few users, but
that there are no users that make zero recommendation. We also see that the
percentage of good products and unknown products in each committee member
is approximately the same for every member and does not depend on the number
of recommendations.

Experiments show the effectiveness of our approach: it is possible to provide
users with good recommendations with high probability but low complexity.

6 Conclusion

In this paper we have presented a new recommendation system based on weaker
assumptions than previous ones. Our recommender is as efficient in terms of
time complexity and probability of having a good recommendation as other
recommendation systems. A user satisfaction experiment supports these results.

References

1. Allen, R.B.: User model : theory methods and practice. International Journal of
Man-Machine Studies (1990) 511 – 543

2. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to
weave an information tapestry. Communications of the ACM (1992) 61 – 70

3. Awerbuch, B., Azar, Y., Lotker, Z., Patt-Shamir, B., Tuttle, M.: Collaborate with
strangers to find own preferences. Proceedings of the seventeenth annual ACM
symposium on Parallelism in algorithms and architectures (2005) 263 – 269

4. Drineas, P., Kerenidis, I., Raghavan, P.: Competitive recommendation systems.
Annual ACM Symposium on Theory of Computing, Proceedings of the thiry-fourth
annual ACM symposium on Theory of computing (2002) 82–90

5. Kleinberg, J., Sandler, M.: Using mixture models for collaborative filtering. Journal
of Computer and System Sciences 74(1) (2008) 49 – 69 Learning Theory 2004.

6. Awerbuch, B., Patt-Shamir, B., Peleg, D., Tuttle, M.: Improved recommendation
systems. Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms (2005) 1174 – 1183

7. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM
(1997) 56–58

8. Mahoney, M.W., Maggioni, M., Drineas, P.: Tensor-cur decompositions for tensor-
based data. In Eliassi-Rad, T., Ungar, L.H., Craven, M., Gunopulos, D., eds.: KDD,
ACM (2006) 327–336

Partial ranking of products for recommendation systems 13

9. Kleinberg, J., Sandler, M.: Convergent algorithms for collaborative filtering. In: EC
’03: Proceedings of the 4th ACM conference on Electronic commerce, New York,
NY, USA, ACM (2003) 1–10

7 Appendix

Proof. (of proposition 1).
The existence is straightforward, so it remains to prove the unicity. Let [n] and

W be such fixed sets and suppose that there exists two different sub-permutation
τ1 and τ2 of τ that satisfy the propriety (1). We then consider the smallest
i ∈ [|W |] such that τ1(k) = τ2(l) = i, with k 6= l elements from W . It follows
that τ1(l) > τ1(k) and τ2(k) > τ2(l) : otherwise, τ1(l) or τ2(k) would be lower
than i making k and l equal. But then, we have by (1) that τ(l) > τ(k) and
τ(k) > τ(l), a contradiction. In any case, we are lead to τ1 = τ2 showing that
the function is unique when W is fixed.

Proof. (of lemma 1).
By induction on the number θ of distinct permutations. The result stands

for θ = 1. As this is obvious for θ ≥ n, we will assume θ < n.
Let us consider that W ⊂ [n] is a set of cardinality at most 2(θ−1) satisfying

∀i, j ≤ θ τi|W 6= τj |W . Recall that is means τi(a) < τi(b) while τj(a) > τj(b) for
some a, b belonging to W , a and b being case-specific for each (i; j) with i 6= j.
We then compare τθ+1|W to the τi|W ’s. If they are all different, then we are
done. Else, there exists some i ≤ θ so that τi|W 6= τθ+1|W . Moreover, such an i
is unique among [θ], otherwise it would contradict the assumption that W allows
to distinguish between τ1, . . . , τθ. As all the θ+1 permutations are distinct, there
exists a, b such that τi(a) < τi(b) while τθ+1(a) > τθ+1(b). Let W ′ = W ∪ {a; b}.
It must be the case that τi|W ′ 6= τθ+1|W ′ . Finally, τθ+1|W 6= τj |W ⇒ τθ+1|W ′ 6=
τj |W ′ so that W ′ permits to distinguish every of the θ+ 1 permutations and we
have that |W ′| ≤ 2(θ − 1) + 2 = 2θ, and the result follows.

