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ABSTRACT
In a social news website people share content they found on
the web, called news, then vote for those they like the most.
Voting for a news is then considered as a recommendation,
and news with a sufficient number of recommendations are
displayed on a front page. Malicious users of such websites
boost their own content by manipulating the votes. We
present SpotRank, an algorithm that can demote the effect
of manipulations, thus leading to a better quality of service.
We also present a website that implement this algorithm and
show evidence of the efficiency of the approach, both from
a statistical and human point of view.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Spam demo-
tion

General Terms
Algorihtms Design Experimentation Human Factors

1. INTRODUCTION
In the last years, the way people interact with each others

on the Web has drastically changed. Websites now provide
information which is an aggregation of user-generated con-
tent, generally filtered using social recommendation meth-
ods to suggest relevant documents to users. The most known
example of such a website is Digg1. This is a social news web-
site: people share content they found on the web through
the Digg interface, then users can vote for the news they like
the most. Voting for a news is then considered as a recom-
mendation, and (according to the result of a non disclosed
algorithm) news with a sufficient number of recommenda-
tions are displayed on Digg’s front page.

1http://digg.com
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Digg has been launched in November 2004, and since then
numerous Digg clones (generally denoted as Digg-like) were
created by webmasters. This huge success can be explained
by the amount of traffic such a website aggregate and redis-
tribute. Indeed, being on the front page of a website such as
Digg seems to be very interesting since repeated testimonies
amongst webmasters state that thousands of unique visitors
are obtained within one day for a website on the front page
of Digg (or similar sites). Since most websites follow an
economic model based on advertisement, obtaining unique
visitors is the best way to improve the income. It is then
tempting for a user to use malicious techniques in order to
obtain a good visibility for his websites.

A malicious technique is explained in details by Lerman in
[9] where she recall the Digg 2006 controversy. This contro-
versy arises when a user posted on Digg an analysis proving
that the top 30 users of Digg were responsible for a dispro-
portionate fraction of the front page (latter studies ensures
that 56% of the front page belongs to the top 100 users only).
This means that the top users are acting together in order to
have their stories (e.g websites they support) displayed on
the front page. The controversy led to a modification of the
Digg algorithm in order to lower the power of this so-called
bloc voting (collusion between a subset of users).

Since 2006, malicious users became more and more effi-
cient (see for instance the paper of Heymann et al. [4]).
Cabals (collusion of large group of users that vote for each
others) have been automatized using daily mailing list, some
users post hundreds of links in order to flood the system,
others have several accounts and thus can vote for them-
selves (using several IP addresses) etc. To the best of our
knowledge, no social news website implements a robust vot-
ing scheme that avoid the problem of dealing with malicious
users while still providing a high quality of service (i.e. pro-
viding relevant news to users).

The main contributions of this paper are:
The design of the SpotRank algorithm. SpotRank is
a set of heuristic techniques whose aim is not to detect and
suppress malicious voting behaviors in social news website,
but rather demote the effect of these behaviors, thus leading
to lower the interest of such manipulations for spammers.
SpotRank is built over ad-hoc statistical filters, a collusion
detection mechanism and also over the computation of the
pertinence of voters and proposed news.
A strong experimental analysis. We present a website
that implement this algorithm and show evidence of the ef-
ficiency of the approach, both from a statistical and human



point of view. This analysis is twofold : we give evidence
that using SpotRank we maintain a behavior for the social
news website which correspond to a regular behavior, and
we also provide a study of the perceived quality of the al-
gorithm on 114 users of our experimental platform (via a
comparison with others french social news websites).

The structure of the paper is as follows. In section 2 we
give some insight about the very few related work. Then, in
section 3, we present our modeling and describe in detail the
SpotRank algorithm. Last, we give in section 4 a complete
experimental analysis of our method.

2. RELATED WORK
Regarding the analysis of social news websites there are

only a few research papers available. The work done by
Kristina Lerman (and her coauthors) in many papers [9, 11,
10, 14, 8] is probably the most extensive done in this field.
These papers analyse the behavior of users and content in
social sites such as Digg and Flickr2. Abstract modeling of
users is done and allows to infer the dynamics of users’ rank
[8], but also to predict which news can obtain good rank-
ing according to the first votes [11]. However, this work is
analytic, the goal is to understand how social news websites
work. We, on the other hand, aim at designing a robust vot-
ing scheme in an adversarial environment, thus our approach
is normative.

In their paper [4], Heymann et al. present a survey on
spam countermeasures for social websites. They sorted three
categories of such countermeasures: identification-based meth-
ods (i.e. detection of spam and spammers), ranked-based
method (i.e. demotion of spam) and limit-based method
(preventing spam by making spam content difficult to pub-
lish). Clearly SpotRank falls in the scope of ranked-based
method since our goal is to reduce the prominence of content
that benefit from malicious votes.

Bian et al. [1] describe a machine learning based ranking
framework for social media that is robust to some common
forms of vote spam attacks. Some other work focusing on
manipulation-resistant system, and using a notion close to
the one of pertinence, can be found in [16].

A related field of research is the detection of click fraud
in the Pay Per Click (PPC) advertising market, but also in
web search ranking. In PPC, webmasters display clickable
advertisements on their website and are paid for each click
going through the ad. In web search ranking, the more a
link to a website is used, the higher the site is ranked. For
instance Jansen [6] give details of the impact of malicious
clicks in PPC while Metwally et al. [12], Immorlica et al.
[5] give strong analysis of the phenomenon together with
algorithms to cope with it. Radlinski and Joachims [15]
focus on randomized robust techniques that infer preferences
from click-through logs.

The problem of giving to the users of a community a good
selection of news seems to be a recommendation problem.
Cosley et al. [2] study the relation between recommendation
systems and users, while Lam and Riedl [7], and O’Mahony
et al. [13] address the problem of malicious users and robust-
ness of systems. However, recommendations by friends has
been proven to always be better than recommendations us-
ing automatic systems (see for instance the papers of Sinha
and Swearingen [17]). To overcome this problem, researchers

2http://www.flickr.com/

from the recommendation systems field introduce the notion
of trust as a reflection of the users similarity.

In this paper, we focus on completely different techniques
that demote votes that are malicious, or done by users known
to be malicious. Our approach does not use machine learn-
ing methods and is based on the notion of pertinence. It is
worth noting that despite the lack of research papers in this
field, there are probably a lot of undisclosed work going on
in the social news websites’ teams.

3. SPOTRANK ALGORITHM
In this section we first present the framework on which

Spotrank is built together with its principle. We then de-
scribe independently each step of the algorithm.

3.1 Framework and principle
In this paper, we consider that the voting system (Spot-

Rank) is used by a community of users belonging to the set
U . Any user of the community can propose its own news (or
content), that we will call spots. The set of spots is denoted
by S. Any user of the community can vote for a spot. A
vote is a triple (u, s, v) where u, v ∈ U and s ∈ S. The set
of all votes is noted V. For the sake of clarity we introduce
some notations:
Vu = {(w, s, v) ∈ V | w = u}
Vuu′ = {(w, s, v) ∈ V | w = u, v = u′}
Vs = {(u, t, v) ∈ V | t = s}

Vu denotes votes made

by u, Vuu′ the votes made by u for a spot proposed by u′,
and Vs the vote made by all users in favor of the spot s. This
modeling is rather theoretical, in practice we have access to
a lot more information on users, votes and spots. In the
following, we will access this information through functions
that will be either clearly defined by the context or explicitly
just before their use.

We can now schematize the SpotRank method. It is im-
portant to know that it is based on two key notions. The
first one is that two votes do not necessarily have the same
value. Indeed, we will assign, depending on many factors,
a score to each vote. This will induce a score for each spot
(the sum of the score of each vote in favor of this spot).
The higher the score of a spot, the closer to the first place
(e.g. the top of the front page) is the spot. A large part of
SpotRank is the score computation mechanism. The other
key notion is the pertinence. The pertinence of a user de-
pends on the pertinence of the spots he voted for, and vice
versa. A part of the score update of a spot will depend on
the pertinence of the user that votes for this spot. Last, an
additional mechanism is used in order to avoid large scale
manipulations: a method to detect cabals (i.e. group of
users that repeatedly vote one for each other).

Finally, figure 1 depicts the voting process of SpotRank
for a given spot. The method is working as follows:
A user proposes a spot. The score of this spot is ini-
tialised according to several criteria (all related to the known
behavior of the user).
Users vote for the spot. Each vote induces an update on
the spot’s score and pertinence, but also of the pertinence
of users that previously voted for this spot. The score of the
spot is then used by a social news website in order to rank
published content.
Periodically, an algorithm that detects collusion between
users outputs clusters of potential malicious users. These
clusters are used for computing the score of a vote.



Alice 
proposes 
the spot s initial 

computation 
of score(s)

Periodically

Periodically

Compute voting clusters 
for demoting cabals

A user votes for the spot s

score(s) is 
updated 
(many 
criteria)

pertinence(s) 
is updated

pertinence of 
users that 
voted for s
is updated

reduce score(s) by x% 
each y hours

Figure 1: Principle of our method

To avoid old very strong spots to stay forever at the top of
the ranking, we reduce the score of a spot periodically.

In the following we describe in details each of these steps.
Each time a practical parameter is used, we denote it by
αi (where i ∈ N) and discuss on its real actual value in
practical applications. Actual values are set according to a
back and forth method: we set a value, test the robustness
of the method with this value, modify it if necessary, until
we obtain a good quality of result.

3.2 Proposing a spot
The first step of our method is the proposition of a spot.

The main threat at this point for social news website is the
flood of the system by some malicious users.

When a user proposes a spot it is necessary to initialize
its score. In an ideal world any value can be used for this
initialization, but we will use this step to demote spots pro-
posed by frenetic spot posters. The initial score will then
depend on two factors: first, the frequency at which the user
proposes spots and second, the frequency at which new spots
come from the user’s IP address.

More precisely, the initial score of a spot s is calculated
with the following formula:

init score(s) = f(n) ∗ cIP (m),

where n is the number of spots proposed by the user in the
last 24 hours, m is the number of spots previously posted
from the user’s IP in the last 20 minutes. f and cIP are
defined as follows:

f(n) =

8>><>>:
100 if n < α0

50 if α0 ≤ n < 2α0

10 if 2α0 ≤ n < 4α0

0 otherwise

and cIP (m) = max
`
0, 1− m

α1

´
.

In practical applications α0 and α1 will be small integers
that depend on the number of visitors of the social news
website. We recommend to use α0 = 2 and α1 = 10.

With this formula for initializing the score of a new spot,
we prevent the effective “spot bombing” from spammers. In-
deed the proposed spot initial score will drop fast until it has
value zero. The cIP (m) coefficient also helps to track down
spammers that use several accounts to pollute the spot pool.
If we add to a social news website a mandatory identifica-

tion in order to propose a spot, it becomes meaningless to
use several accounts (IP spoofing is then useless).

3.3 Voting for a spot
Once a spot has been proposed to the community it can

be “pushed” to the front page (i.e. put in the top ranked
news). The spots ranking is done according to their scores.
The voting part is the one requiring the most attention since
it is where the spammers will concentrate all their attacks.
We propose a set of filters whose aim is to counter all the
attacks a spammer could think of. The idea here is simple:
a vote has a base value which is the pertinence of the voter.
This value is then modified according to several criteria to
provide the actual value of a vote (its score). The score of
the vote is then added to the current score of the spot in
order to obtain its new score.
Base value of a vote: pertinence. The key notion of
our voting system is the pertinence of users and spots. We
denote the pertinence of user ui by pert(ui). Similarly, the
pertinence of a spot sj is pert(sj).

Definition 1. The pertinence of a user without voting
history (i.e. a new user) is a constant α3.

The pertinence of a user ui with a voting history is:

pert(ui) =
1

|Vu|
X

(u,s,v)∈Vu

pert(s),

where

pert(s) =
score(s)

|Vs|
.

The pertinence of a user u is thus the mean value of the
pertinence of the spots u voted for. The pertinence of a spot
is its score divided by the number of votes it received (i.e.
this is the mean value of the votes for s). In our experiments
we set α3 = 100 to match the value of a fresh legitimate spot.

We can now define the base value of a vote as the per-
tinence of the user that votes. This value is weighted by
several coefficients that we can now describe, each of this
coefficient can be seen as a response to a specific type of
attacks.
High frequency voting. Most of the time, spammers try
to promote a lot of low quality news. All the gain of their
manipulations is more due to mass effect than to the pro-
motion of only one peculiar web page. Thus they have no
other way of voting than using burst voting. It means that
a typical spammer votes for a lot of spots in a short amount
of time. To demote this effect we will weight the score of
a spot by a coefficient freq(u) that depends on the user’s
voting frequency.

Definition 2. Let n = |Vu|, freq(u) is defined as

freq(u) =


1 if n < 2

min(1, date(vn)−date(v1)
α4∗n

) otherwise

α4 is the time interval that is reasonable between two votes.
Abusive one-way voting. In order to decoy manipula-
tion detection, a typical spammer uses several accounts: one
clean account to propose spots, and several disposable ac-
counts to vote for the spots proposed by the clean account.
To reduce the score of votes made in this spirit, we define
a coefficient fp(u, u′) whose goal is to take into account the
particular frequency of systematic one-way voting from a
user u to a user u′.



Definition 3. Let u, u′ ∈ U , fp is defined as

fp(u, u′) = 1− |Vuu′ |
|Vu|

With this coefficient, users that vote only for one specific
user will have their vote becoming useless.
Quick voting. Spamming is a large scale activity so it
is unthinkable for a spammer to stay a long time on one
given website. The behavior is then to propose a spot and
to quickly vote for it using several accounts. This is not a
natural behavior since the time interval between the propo-
sition and the vote is too short for a human to even look at
the website associated to the spot.

To avoid quick voting we block any vote in the first minute
of appearance of the spot s on the site and after that we use
a stair function based on date(s) and t the current time.
This function (called time) is defined as follows.

Definition 4.

time(s) =

8>>><>>>:
0.3 if t− date(s) < 120
0.5 if t− date(s) < 240
0.7 if t− date(s) < 420
0.9 if t− date(s) < 540
1 otherwise

Multiple avatars and physical community. As said
previously, a typical spammer will have many accounts, some-
times he will also have automatic voting mechanisms. These
voting bots are often located on only a few servers, so they
share the same IP address (or only very few IPs addresses).
It is then interesting to have a coefficient that demotes votes
for a given spot if they come from the same IP address. One
could object that legitimate users can share the same IP ad-
dress. Our opinion on this matter is that when legitimate
users belonging to the same IP address vote for the same
spot it is a kind of manipulation (one can think of students
of the same university that vote for one of them).

Therefore, for a same spot, votes coming from the same
IP address receive a decreasing coefficient coeffIP depending
on the number n of previous votes from this IP address:

Definition 5.

coeffIP = (α5)
n

In practical applications α5 is a real number between 0 and
1 (typically 2

3
in our case).

Avoiding the voting list effect. The main threat for
social news website is the existence of cabals. A cabal is a
group of people that unite their efforts in order to promote
their own spots. There exists highly organised cabals whose
goal is to manipulate ranking of social news websites. This
is classically done through daily mailing lists. The daily mail
contains a list of news for which votes are required. Users of
such lists can propose their own news to the list depending,
most of the time, of the number of votes they made for other
members of the cabal.

In the next subsection we present our method for detecting
cabals (that we call clusters). But here we assume that we
already detect these clusters. Such a cluster is a list of users
that periodically vote one for an other.

To slow down the effect of the cabals we proceed as follows:
if a user u votes for a user u′ and both users are in the same
“cluster” then the value of the vote is weighted by the inverse
of the size of this “cluster”. This lead to the definition of the
following coefficient.

Definition 6. let cluster(u) be the cluster to which user
u belongs (if any), then:

clust(u, u′) =


1 if cluster(u) 6= cluster(u′)
1

|cluster(u)| otherwise

Summary: computation of the actual score of a vote.
We can now define the score of a vote. This is actually the
base value score weighted by all the coefficients we defined
above.

Definition 7. the score of a vote v from the user u for
the spot s posted by the user u′ is:

score(v) = pert(u)·freq(u)·fp(u, u′)·clust(u, u′)·time(s)·coeffIP

It now remains to define the score of a spot according to this
definition.
Computation of the score of a spot. The score of a
spot is simply the sum of all votes for this spot and of the
initial score of the spot. This quantity is however weighted
by a multiplicative coefficient that depends on the age of the
spot. This time decay is used to promote new spots against
old strong spots (it is not interesting that popular news stay
forever on top of the ranking).

Definition 8. The score of the spot s ∈ S is defined as:

score(s) = time decay(s) ·
`
init score(s) +

X
v∈Vs

score(v)
´

The score of a spot s is updated each time a user votes
for it, but also periodically since the value of time decay
varies over time. In practical applications, we define the
time decay as:

Definition 9. Let d be the age (in days) of the spot.

time decay(s) =


1 if d ≤ 2
0.8d if d > 2

The decay start after 2 days to give fresh spots an advantage
over old ones. The value 0.8 comes from an experiment on
the better value to ensure a sufficient turn-over on the front-
page of the social news website.

On a classical social news website using SpotRank, all
spots are ranked according to their score (the higher the
better).

3.4 Detecting cabals
In this subsection, we present our algorithm for the detec-

tion of collusion of voters. It is a fair idea to use the weighted
directed graph of votes (nodes represent voters, arcs corre-
spond to votes and weights to the number of votes between
two users). The standard approach to identify group of users
in this graph is then to cluster it. State-of-the-art tech-
niques such as the ones of [18, 3] are not efficient on large
graphs. The graph underlying a social news website can
quickly attain a huge size, so we cannot use these clustering
techniques.

Instead, we propose here to regroup people that massively
vote between themselves. Therefore we use the following
algorithm that should be run regularly to identify new cabals
and actualize the existing ones.



Collusion detection for user u
1. Let E = {(v, k)/(Vu,v 6= ∅ ∧ k = |Vu,v|}

Sort E according to k in decreasing order.
2. Put the first p users (according to this sorting) into a
set Favp(u).
3. Sort alphabetically the set Favp(u) with u’s ID in-
cluded.
4. ∀v ∈ Favp(u), if |Favp(u)∩Favp(v)| > α6 then u and
v are in the same group.

This algorithm should be run for each user in order to
assign this particular user to a cluster (potentially a clus-
ter of size 1). Let n = |U|, the complexity of the algo-
rithm is O(n log(n)) for the step 1, O(1) for the step 2,
O((p + 1) log(p + 1)) for the step 3, and O(p2) for the step
4. The total complexity is then O(n log(n) + p2) which is,
in practice, O(n log(n)) since p is a fixed parameter. In our
experiment, p = 5 and α6 = 3. Those parameters have
rather small values, it can be explained by the fact that our
community is still small (200 users).

After running this algorithm we store the groups along
with their size to reuse it during the vote phase.

4. EXPERIMENTS
We present two different evaluations of SpotRank. The

first is a statistical analysis of the output of our method:
distribution of users, votes, pertinence of both users and
spots, ranking, cluster sizes, etc. The second evaluation is a
investigation of the human perceived quality of our ranking
method.

In order to collect data about the behavior of SpotRank
we created a social news website (http://www.spotrank.
fr). Spotrank.fr strictly implements the method presented
in this paper and ranks the spots according to their score
(computed as presented in section 3). The website has been
launched on July the 9th. The data we use for the paper
were collected the 10/26/2009. Since its launch, the website
received around 15600 visits, had served around 43000 page
views. The bounce rate is 67.85% and the average time spent
by a visitor on the website is 2:37 minutes. The presence of
spammers is effective, we estimate (by hand) that at least 10
to 15% of our 200 registered accounts belong to spammers.
Log files are available for the reviewers upon request.

4.1 Log analysis of spotrank.fr
Our log files contain all the information about spots and

users and allow us to show accurately the behavior of our
method in a real adversarial environment. We present our
analysis through several figures. The information we used
for this experimentation was collected between the 23rd of
July and the 26th of October.
Figures 2, 3 and 4. These figures show similar data at
three different moments of our analysis: at the beginning
(07/23), the 09/08 and at the end (10/26). They all repre-
sent the percentage of users of SpotRank that have a given
pertinence. For instance the first bar on the left of figure 2
means that around 7% of the users have a pertinence be-
tween 0 and 5. We can see that as time goes and the number
of users grows the pertinence of the users tends to spread
more. The percentage of users at the right of all graphics
represents the new users that never voted for anything so
they keep their initial maximum pertinence. Even if distri-
bution of users regarding the pertinence seems almost uni-
form, we can see that most users have a pertinence between

15 and 50. Thus we define two categories of users, the non-
relevant users whose pertinence is less than 10 and the rel-
evant users whose pertinence is greater than 50 but don’t
include the newcomers in order to make sure that this good
pertinence is not a consequence of a clean start. Being in
the non-relevant category does not mean for a user that he
votes for spots others don’t like. It means that the user
votes often for spots with low pertinence. It is likely that
this category contains mainly spammers.
Figure 5. The two curves on this figure show the evolution
of the proportion of users belonging to both the non-relevant
and the relevant categories on a period of 3 months. We can
see that the percentage of non-relevant users including spam-
mers is decreasing while the percentage of relevant users is
increasing. This could be explained by spammers being dis-
couraged but more likely by the arrival of new relevant users.
The increase of the size of the relevant category can also
be explained by the fact that at the launch of the website,
spammers propose spots faster than legitimate users. This
means that at first most of the spots have a low pertinence,
inducing a low pertinence for voters.
Figure 6. This histogram presents the number of users
that proposed a given number of spots during the 3 months
of the experimentation. It can be seen that the majority
of users proposes a few spots (less than 3). There are few
people with a oddly high number of proposed spots. We
checked by hand the top proposers. Amongst them, the
first three (with respectively 591, 440 and 108 spots) are
clearly spammers while the fourth (99 spots) is a borderline
user that proposes every single post of his blog.
Figure 7. The figure depicts the number of users w.r.t. the
number of votes. Pay attention to the fact that the Y-scale
is logarithmic. We can see that most users don’t vote a lot:
more than 80% of them had voted less than 10 times. The
people that vote the most are clearly the ones we suspect to
be spammers. If we look for instance at the outlier with 533
votes, this is without surprise the spammer we spotted on
the previous figure. It is a user that proposes a lot of spots
and vote only for his own spots. It does not appear in the
figures, but they are users that does not propose spots (or
only very few) and that vote a lot.
Figure 8. On a social news website such as spotrank.fr
there are only a few slots available for promoting highly
popular spots. Is this a problem? Is the pressure on spots
too high to ensure a fair access to the front page for spots
that deserve it? Figure 8 gives the answer by showing the
behavior of spots’ score during their first 48h of existence
(i.e. before they undergo the exemption owed to the time
decay). The max (resp. min) curve give the score of the
most (resp. least) popular spot at the time the measure
is done. The average curve give the mean value of scores
during the first 48h. We can clearly see that only a few
spots become popular. We can also infer from this figure is
the average value of votes for the most popular spot. Indeed,
most popular spots received around 15 votes, meaning that
the average score of votes for these popular spots is around
25 (to compare to 100, the maximum possible score of a
vote, but also to 10, the threshold beyond which users are
not considered relevant anymore).
Figure 9. This last figure shows the number of votes that
share a given score. It is clear that most of the votes (≈1600)
have very low score. It is not a surprise since we already
have exhibited a spammer with 533 votes that vote only for



himself and with high frequency, meaning that several of our
filters act to preclude the score to be high. Most legitimate
users seems to have votes with score between 5 and 50, and
only a few have very high score.

To summarize, the figures that we provide in this subsec-
tion show clear evidence of the effectiveness of the method:
spammers are detected, and the score of votes seems to be
adapted to avoid manipulations.

4.2 Human Evaluation
Even with a very strong analysis of the log files, it is im-

possible to judge the quality of the filtering of our method.
Indeed, the algorithm consists in filtering news w.r.t. the
way people vote, it is not content related. To cope with
this issue we decided to gather some feedback from the web-
site visitors. Since an absolute judgement is impossible to
obtain without a long debate on what is the quality of a
website, we choose to compare the top “stories” of three so-
cial news website. The first is of course spotrank.fr which
implement the method presented in this paper, the other
two are scoopeo.com and fuzz.fr, these are two of the three
major competitors in the field in France. The third major
actor is wikio.fr, which is too strongly human moderated to
ensure a fair competition. The interest of the two chosen
social news website is that they use automatic method to
filter news, and also that the human moderation has mainly
the goal to suppress non legal content. The way these two
competitors are filtering news is mostly unknown since those
are business websites. It is just known that scoopeo.com is
giving more weight to news for which there are a lot of votes
in a short time interval. From now on, scoopeo.com will be
denoted as comp1 and fuzz.fr as comp2. In a final (public)
version of this paper, we will remove mention of the name of
the competitors in order to avoid potential legal issues. Our
survey protocol is the following. To have relevant results
we periodically collected the first five spot on spotrank.fr
together with the top 5 of the two major french social news
websites comp1 and comp2. We then automatically gener-
ate disposable web pages containing a shuffle of this list of
15 news. Each web page is then sent to a volunteer who has
to tell for each news if,

Yes, it is relevant for the news to appear on the front page
of a social news website.
No, it is not relevant for the news to appear on the front
page of a social news website.
DnK, he is not able to determine if the news deserve to be
on the front page or not.
Err, The news was not accessible when he tried.

We collected the first five news of each website during a
period of 3 months, and 114 persons participated to the poll.
We now present our experimental results.

Figure 10. This figure could be considered as a summary
of the results of the poll. For each competitor it presents the
number of Yes, No, Dnk and ERR. The number of ERR
that appears in surveyed people answers is not of interest
since this is an external factor that applies for all three social

news website. However a higher rate of error could indicates
links to unreliable site. Pay attention to the fact that for
each competitor, each surveyed person is giving 15 answers,
so the total number of answers is 1710.

The important point is that SpotRank outperforms both
competitors whatever the criterion. Our method received
344 Yes while comp1 and comp2 received respectively 270
and 177 Yes. The performances of comp1 (resp. comp2) are
only 78.5% (resp. 50%) of those of SpotRank, thus surveyed
people think that the ranking given by SpotRank is of higher
quality than the two others. Concerning the No answer the
situation is similar: this time the lower is the better since
this means that the top spots are considered not legitimate
and SpotRank received 174 No, while comp1 and comp2
received 237 and 247 such answers. Last, 44 DnK were
received by SpotRank. This is again a better achievement
than comp1 and comp2 and this means that the filtering of
SpotRank gives clearer results (only a few borderline spots).
Figure 11. In the previous figure, the behaviors of all users
were merged in the counting of each type of answer while
here we consider the opinion of each surveyed person. a
social news website is considered first if the number of Yes
he received from a peculiar answerer is greater than those
received by the two other competitors. It is second (resp.
third) in the case where it received the second (resp. third)
number of Yes. SpotRank is in first position two times (resp
four times) more than comp1 (resp comp2), showing again
its higher performances. It is naturally second and third less
often than the others.
Figures 12 and 13. These figures are similar to the one
we mentioned before for the No and DnK answers. These
two figures confirm what we have presented above.

To summarize, this user satisfaction survey show clearly
that the filtering of SpotRank is perceived to be of high
quality. It is interesting to note that some early adopted
spammers have already given up playing with SpotRank (see
previous subsection).

5. CONCLUSION
We presented a robust voting system for social news web-

site whose goal is to demote the effect of manipulation.
Through a website that implement this algorithm, we show
evidence of the efficiency of the approach, both from a sta-
tistical and human point of view. SpotRank clearly outper-
forms real competitors in a real life web ecosystem, proving
the interest of the key notions used to design the method
(pertinence, frequency filtering and collusion detection).
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