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I Fighting malicious behaviours on the Web 25

3 Introduction 27
3.1 Collaborative news websites . . . . . . . . . . . . . . . . . . . 29
3.2 Fighting social spam . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 WebSpam presentation . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Fighting Webspam . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Edge betweenness centrality . . . . . . . . . . . . . . . 39
3.6.2 Markov clustering technique . . . . . . . . . . . . . . . 41

4 Malicious behaviours in social news websites 45
4.1 SpotRank algorithm . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Framework and principle . . . . . . . . . . . . . . . . . 46
4.1.2 Proposing a spot . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Voting for a spot . . . . . . . . . . . . . . . . . . . . . 48
4.1.4 Detecting cabals . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Log analysis of spotrank.fr . . . . . . . . . . . . . . . . 54
4.2.2 Human Evaluation . . . . . . . . . . . . . . . . . . . . 61

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Demoting WebSpam 67
5.1 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Detecting WebSpam 79
6.1 Random walks against Webspam . . . . . . . . . . . . . . . . . 80
6.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



TABLE DES MATIÈRES 7
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1
FRENCH SUMMARY

1.1 Introduction

De nos jours, les systèmes informatiques ont une taille sans cesse croissante
pour répondre aux besoins des utilisateurs. Que ce soit dans le domaine du cal-
cul scientifique où de plus en plus d’ordinateurs sont reliés pour répondre à des
problèmes sans cesse plus complexes ou dans le domaine du loisir avec un In-
ternet grandissant pour satisfaire toujours plus la curiosité des utilisateurs.

Les défis qui concernent les réseaux à grande échelle sont nombreux : pou-
voir garantir aux utilisateurs d’un cluster que leur calcul arrivera à terme et sans
erreur dans un temps raisonnable, distribuer des données entre petites entités
intelligentes efficacement ou encore protéger le Web contre les tricheurs.

Le but de ma thèse est d’apporter des réponses pour les systèmes à grande
échelle afin de garantir l’expérience utilisateur la plus agréable possible.

Les travaux réalisés au sein de cette thèse vont de la conception d’algo-
rithmes à la réalisation de modules pour le noyau d’un système (GNU/Linux).
Les domaines étudiés vont des spammeurs sur le Web aux bancs d’essai pour les
applications à très grande échelle.
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10 CHAPITRE 1. FRENCH SUMMARY

1.1.1 Les tricheurs sur la toile
De nos jours l’Internet est un endroit immense où chaque jour des millions

d’internautes font des milliards de requêtes. Afin de les aider, les moteurs de
recherches classent les pages sur des critères indépendants de la pertinence à la
requête afin de retourner les pages les plus populaires à l’utilisateur.

Le Webspam est un enjeu important économiquement car il permet aux spam-
meurs de se positionner idéalement sur les requêtes à fort but lucratif. Dès lors il
est primordial pour les moteurs de recherche de se débarrasser des tricheurs ou
à tout le moins de les reléguer aux dernières pages de résultats.

J’ai travaillé sur la détection et le déclassement du Webspam et dans cette
thèse je présente deux méthodes pour lutter contre le Webspam. Ces deux méthodes
sont rapides et économes en mémoire, ce qui est primordial lorsque l’on travaille
sur un graphe de la taille du Web. J’ai développé ces méthodes avec Sylvain
Peyronnet, cela a donné lieu à une publication à la neuvième conférence interna-
tionale Web Intelligence en 2010 [61] et à un deuxième article publié au premier
workshop international Web Intelligent Systems and Services en 2010 [62]

Les Webspammeurs cherchent à maximiser leur exposition sur la Toile afin
d’augmenter leurs revenus. Les moteurs de recherche ne sont pas la seule cible
des tricheurs. Avec l’arrivée du Web 2.0, les spammeurs peuvent avoir plus d’in-
fluence sur les contenus trouvés sur le Web, notamment au travers des sites col-
laboratifs.

Les sites d’informations collaboratifs sont des sites Web où les utilisateurs
proposent eux-mêmes les liens vers des informations et peuvent voter pour celles
qu’ils voudraient voir en première page. Le but des tricheurs est alors d’attein-
dre la première page pour maximiser leur exposition. Il est donc important de
bloquer les tentatives de ces tricheurs afin de rendre nulles leurs attaques sur le
système.

Avec Sylvain Peyronnet, nous avons mis au point un schéma de vote robuste
pour lutter contre les tricheurs sur les sites sociaux d’information. La méthode
s’appelle SpotRank et elle a été utilisée dans un site Web du même nom mis
au point par Guillaume Peyronnet. Ce travail a été présenté lors du quatrième
Workshop on Information Credibility On the Web [60].

1.1.2 Les systèmes à grande échelle
Le nombre de machines requis pour mener à bien un calcul à tendance à

augmenter au fil des années, ceci afin de faire perdurer la loi de Moore. On a
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donc vu apparaı̂tre les clusters puis les grilles de calcul afin de pouvoir mener à
bien les calculs scientifiques.

Développer des applications à cette échelle est évidemment plus compliqué
lors de la conception mais aussi lors des tests. Il faut être certain de maı̂triser un
maximum de paramètres afin de pouvoir comprendre et reproduire les conditions
expérimentales.

Durant cette thèse, j’ai tout d’abord participé à l’élaboration d’un banc d’es-
sai pour les applications parallèles et distribuées à grande échelle. L’objectif était
de fournir un émulateur afin de posséder un contrôle complet de l’environnement
pour tester les applications et pas un modèle de celles-ci.

Benjamin Quétier avait réalisé une plateforme où les machines étaient vir-
tualisées grâce à la technologie Xen [5] et où le réseau passait par des ma-
chines FreeBSD. J’ai étendu ce banc d’essai en y ajoutant de la virtualisation
réseau niveau bas avec le protocole EtherIP [52]. Il s’agit d’un travail joint avec
Franck Cappello, Mathieu Jan, Thomas Hérault, Sylvain Peyronnet et Benjamin
Quétier ayant donné lieu à une publication à la sixième conférence internationale
ACM Computing Frontiers [47] ainsi qu’à un chapitre de livre publié chez IOS
Press [46].

J’ai ensuite rejoint un groupe de travail composé d’Aline Carneiro-Viana,
Thomas Hérault, Sylvain Peyronnet et Fatiha Zaı̈di sur les réseaux de capteurs.
Dans ces réseaux qui peuvent être très étendus, les unités de calcul sont très
limitées en puissance et en mémoire, de plus leur autonomie est aussi un facteur
important car si un trop grand nombre d’entre elles tombent en panne cela peut
déconnecter le réseau.

Nous avons proposé ensemble un nouveau protocole de dissémination des
données dans les réseaux de capteurs avec collecteur mobile. Notre protocole
requiert l’échange d’un nombre de messages exponentiellement plus faible que
ce qui pouvait être fait avant. L’article concernant ce protocole sera présenté à
la treizième conférence internationale ACM Modeling, Analysis and Simulation
of Wireless and Mobile Systems [17].

1.2 Déclassement du Webspam

1.2.1 Le Webspam
Le Webspam désigne l’ensemble des techniques malhonnêtes pour accroı̂tre

son classement dans les moteurs de recherche. En effet, il est facile mais aisément
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détectable d’augmenter artificiellement sa pertinence concernant une requête
pour un moteur de recherche. De plus les spammeurs cherchent le plus sou-
vent à améliorer le classement de pages pertinentes et intéressantes. En effet sur
le Web on ne gagne pas d’argent directement avec les pages de spam.

Les spammeurs concentrent le plus souvent leurs attaques sur les algorithmes
de popularité des moteurs de recherche. Ces algorithmes bien connus tel le
PageRank [80] de Google où l’algorithme HITS [57] implémenté dans des mo-
teurs anglophones très utilisés comme http://www.ask.com. L’algorithme de
Google donne un score de popularité a priori à toutes les pages. L’algorithme
HITS quant à lui classe les pages qui arrivent en résultats à une requête. Dans
un cas comme dans l’autre, le calcul de popularité est effectué sur des critères
purement structurels et ne fait pas appel au contenu des pages.

Les deux algorithmes se basent sur les liens reçus par les pages web pour
évaluer leur popularité (PageRank) ou leur authorité (HITS). La philosophie
derrière cette manière de calculer la popularité est la suivante, lorsqu’un site
A fait un lien vers un site B, A vote pour B indiquant aux surfeurs qu’ils peuvent
y trouver du contenu intéressant qui mérite d’être vu.

Les spammeurs ont très vite compris qu’il était facile d’améliorer artificielle-
ment sa popularité. En effet il suffit de créer soi-même beaucoup de pages web
qui vont voter pour la page cible. De ce fait on récupère beaucoup de votes. Ces
pages créées dans ce seul but ne reçoivent quant à elles pas de votes donc le
leur ne vaut quasiment rien. Toutefois en en créant suffisamment il est possible
d’améliorer substantiellement mais frauduleusement son score.

Recevoir beaucoup de votes de petits votants n’est pas une stratégie optimale
pour maximiser son score de popularité. Zoltan Gyongyi et al ont étudié la struc-
ture à mettre en place pour maximiser la popularité d’une page dans le cadre du
PageRank dans [38]. Christobald de Kerchove a lui résolu le problème de max-
imiser le pagerank d’un ensemble de pages. Il propose l’architecture à mettre en
place dans [26].

Ces tactiques optimales ont été utilisées par le passé à grande échelle par les
spammeurs afin d’améliorer leur score. Toutefois les moteurs de recherche ont
rapidement mis en place des contremesures afin de détecter ces comportements
pour ne plus les prendre en compte dans son calcul.

De nos jours, les Webspammeurs mettent en place de nombreuses pages avec
une architecture particulière afin de faire circuler le PageRank tout en augmen-
tant le score de la page cible. Ces ensembles de pages créees dans ce but sont
communément appelées des fermes de liens.

Il s’agit d’un enjeu important pour les moteurs de recherche. En effet la
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qualité des résultats est importante afin de gagner et garder la confiance des
utilisateurs. Le placement frauduleux des spammeurs sur certaines requêtes nuit
à la réputation du moteur de recherche.

1.2.2 Lutter contre le Webspam
On peut diviser en deux parties les techniques de lutte contre le Webspam : la

détection et le déclassement. La première méthode cherche a repérer les tricheurs
tandis que la deuxième cherche à annuler les effets de la triche sans pour autant
pointer qui que ce soit du doigt.

Ntoulas propose une méthode d’identification du Webspam dans [76] basée
sur l’analyse du contenu des pages. A partir d’une dizaine de critères il établit
un classificateur qui va étiquetter les pages analysées. Cette méthode pose un
problème parce qu’elle est coûteuse et les pages promues par le Webspam n’y
appartiennent pas. Dès lors il faut identifier tout le Webspam autour d’une page
pour réellement faire baisser son pagerank.

Gyongyi et al propose dans [39] une méthode pour repérer les tricheurs en
diffusant de la confiance dans le graphe à partir d’un ensemble de sites de confi-
ance précédemment sélectionnés. Une méthode similaire est présentée dans [58]
par Krishnan et al. Elle consiste dans la diffusion d’“Anticonfiance”, elle possède
les même problèmes que la première méthode à savoir trouver le bon ensemble
de départ qui va permettre de couvrir tout le graphe.

Une nouvelle variation de cette méthode est proposée dans [100] par Wu et
al. La différence c’est qu’ici est pris en compte l’adéquation sémantique.

Une autre méthode consiste à calculer des pageranks biaisés pour ne pas
prendre en compte les effets de la triche.

1.2.3 Résultats
La première technique que nous proposons pour combattre le Webspam est

basée sur le partitionnement du graphe du Web. En effet les fermes de liens sont
très souvent des endroits très denses du Web. De ce fait les tricheurs devraient
être durement touché par un calcul de pagerank où les seuls contributeurs d’une
page sont les pages qui appartiennent à un cluster différent.

Cependant les techniques classiques de partitionnement sont trop coûteuses
pour être appliquées à l’ensemble du graphe du Web. Nous proposons donc
plusieurs méthodes locales pour regrouper les noeuds du graphe.
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La première méthode proposée consiste à regrouper les noeuds qui ne font
qu’un lien avec la page vers laquelle ils font ce lien. La deuxième méthode con-
siste à regrouper ensemble tous les noeuds appartenant à des boucles très courtes
(3 pas). Enfin la dernière méthode consiste à lancer des marches aléatoires cour-
tes depuis une page et de la regrouper avec celle sur laquelle le plus de marches
ce sont arrêtées si ce nombre dépasser un certain seuil.

La première méthode est inefficace tandis que la deuxième et la troisième
font baisser significativement le pagerank des pages qui semblent tricher. Toute-
fois il n’existe de preuve statistique que pour la deuxième méthode de regroupe-
ment.

La deuxième technique de lutte contre le Webspam se base, elle, complètement
sur les marches aléatoires et ne fait plus de rétrogradation. Les pages profitant du
Webspam sont ici identifiées. Pour ce faire on lance une marche aléatoire depuis
les noeuds suspects du graphe en ne stockant pas les identifiant des noeuds dans
le graphe mais leur distance par rapport au point de départ de la marche aléatoire.

On calcule ensuite un vecteur qui représente la fréquence des n-grammes
dans cette marche aléatoire. A partir de ce moment il ne reste plus qu’à identifier
des motifs dans ces vecteurs.

Cette technique est plus coûteuse que la première et ne peut être appliquée
sur l’ensemble du graphe. C’est pourquoi il faut tout d’abord sélectionner les
pages suspectes, ie appartenant à un certain intervalle de pagerank ou ayant un
degré entrant anormalement élevé.

Il faut aussi posséder une bonne bibliothèque de motifs à comparer avec les
vecteurs de fréquence. Nous avons obtenu de très bons résultats en utilisant une
petite bibliothèque de motifs.

1.3 Les réseaux de capteurs mobiles

1.3.1 Définition et défis

De nos jours, pour récupérer des données à grande échelle en pleine nature il
est courant d’utiliser des sondes disséminées. Ces entités servent à faire des ob-
servations météorologiques, prévenir en cas de départ d’incendie. . .Ces senseurs
sont de petites unités de calcul qui doivent coopérer pour arriver à un résultat.
Les données récupérées par les senseurs sont ensuite rassemblées par un noeud
collecteur qui ne possède aucune limitation de ressources.
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Le noeud collecteur peut être soit statique soit mobile mais doit être relié au
réseau par au moins un senseur. Dans le cas où le noeud collecteur est mobile,
sa trajectoire au dessus des capteurs mobiles peut être prédéfinie.

Le problème dans les réseaux de capteurs est donc de bien distribuer les
données à travers le réseau afin qu’elles puissent être collectées de manière effi-
cace. Il existe 2 approches, l’approche réactive et l’approche proactive. Dans le
cas réactif il s’agit d’amener les données vers les collecteurs statiques ou alors de
réagir à la position des collecteurs mobiles afin d’amener les données acquises
sur sa trajectoire.

Dans le cas proactif, une zone est définie pour le stockage des données dans
laquelle le collecteur pourra définir une trajectoire une fois que les noeuds stock-
ant l’information seront connus ou alors se balader aléatoirement dans la zone
prédéfinie.

Le plus gros problème à prendre en compte dans les réseaux de capteurs mo-
biles est le faible niveau de ressources que possèdent les senseurs. Les schémas
de distribution doivent être simples et avoir un faible surcoût. De plus les senseurs
n’ayant qu’une connaissance locale du réseau, il est important de bien choisir les
noeuds qui vont stocker les données.

1.3.2 L’algorithme RaWMS
L’algorithme présenté ci-dessous s’inscrit dans le cadre de la dissémination

proactive.

Fonctionnement. Ici il s’agit de distribuer l’information dans un réseau de
capteur où l’ensemble du réseau constitue la zone de récupération des données.
Chaque noeud possède une mémoire limitée de taille s(n) et ne peut donc stocker
l’ensemble des informations du réseau. De plus le collecteur se déplacera libre-
ment dans la zone de collecte une fois la dissémination achevée.

Description. Afin de distribuer de manière efficace les données dans l’ensem-
ble du réseau, Bar-Yossef et al ont établi une méthode baptisée RaWMS [4].
Dans cette méthode, les noeuds sélectionnent les noeuds à qui ils vont envoyer
leur donnée en utilisant des marches aléatoires. Les marches aléatoires sont
légèrement biaisées afin d’arriver à une distribution stationnaire uniforme sur
l’ensemble des noeuds.
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Chaque noeud répète sa dissémination tous les ∆ périodes de temps. De cette
manière il est possible de garantir une excellente récupération des données par
le collecteur mobile.

Cette approche est efficace car elle permet une bonne récupération des données
par un collecteur mobile, de plus elle est très robuste aux pannes des capteurs car
les marches aléatoires évitent naturellement les noeuds en panne.

Analyse. Néanmoins cette méthode échange beaucoup de messages puisque
pour choisir un noeud la marche aléatoire doit être suffisamment longue. En effet
si la distribution stationnaire est uniforme, cela n’est pas forcément le cas après
seulement t pas. Il faut donc garantir que t soit supérieur à l’ε-temps de mixage
de la marche aléatoire. Au delà de ce nombre de pas la distribution obtenue
sur les noeuds est ε proche de la distribution stationnaire. Le temps de mixage
dépend du graphe sous-jacent au réseau mais est dans le cas qui nous intéresse
de l’ordre du nombre de noeuds du réseau. De ce fait le nombre de messages
à échanger pour garantir une bonne propagation des données du réseau est en
O(n2).

Dès lors il est important de conserver les points positifs de cette méthode, à
savoir la bonne dissémination et la robustesse tout en améliorant le nombre de
messages échangés afin de rendre ce dernier plus raisonnable.

1.3.3 Notre proposition
Lors de travaux réalisés en collaboration avec Aline Carneiro-Viana, Thomas

Hérault, Sylvain Peyronnet et Fatiha Zaı̈di, nous proposons une approche proac-
tive pour la dissémination de données dans les réseaux de capteurs mobiles qui
améliorent le précédent résultat d’un facteur exponentiel.

Nous utilisons les mêmes hypothèses que la méthode exposée plus haut, à
l’exception de la zone de récupération des données qui chez nous est définie par
l’utilisateur et pas forcément égale à l’ensemble du réseau.

L’idée derrière notre méthode est de plaquer une structure sur le réseau afin
de guider les marches aléatoires sans pour autant les biaiser.

Notre méthode peut être découpée en trois étapes.

Construction de l’arbre. Afin de garantir un nombre de messages relative-
ment faible pendant la dissémination des données, nous construisons un arbre
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sur notre réseau. Cet arbre doit être au moins binaire et assurer une distance log-
arithmique entre toutes les paires de senseurs. Il est primordial de s’assurer que
l’arbre n’est pas complètement désiquilibré. Chaque noeud connaı̂t ses fils et son
père dans l’arbre.

N’importe quelle technique qui établit un arbre sur un réseau de capteurs
peut faire l’affaire comme par exemple PeerNet [28] qui construit un arbre bi-
naire. Lors de nos expériences nous avons utilisé un algorithme glouton, toute-
fois notre méthode peut être adaptée pour toute topologie garantissant un nombre
logarithmique de sauts entre chaque paire de noeuds.

Distribution des poids. Pour choisir la zone dans laquelle les données doivent
arriver et quels noeuds doivent être privilégiés, il faut poser des poids sur les
noeuds. Un poids > 0 indiquant que le noeud fait partie de la zone de collecte.
N’importe quelle distribution marche sachant qu’un noeud i sera au final choisi
avec une probabilité poids(i)∑

k∈Noeuds poids(k)
.

Chaque noeud fait ensuite remonter son poids dans l’arbre de la manière
suivante : les feuilles font remonter leur poids à leur parent, les noeuds internes
font remonter la somme de leur poids et de celui de chacun de ses sous-arbres.
Au final un noeud stocke son poids plus le poids de chacun de ses sous-arbres,
ce qui implique un surcoût en mémoire pour les senseurs. C’est pourquoi il est
important que l’arbre reste k-aire avec k assez petit.

Dissémination des données. Chaque noeud fait remonter sa donnée à la
racine de l’arbre en un nombre logarithmique d’étapes. Ensuite chaque noeud
décide de l’avenir de la donnée dans l’arbre en tirant selon son poids et celui
de ses sous-arbres si il conserve la donnée ou dans quel sous-arbre elle doit
descendre. Au pire la donnée atteindra une feuille en un nombre logarithmique
de pas.

La complexité de notre méthode en nombre de messages est donc la suiv-
ante : O(n log(n)) pour la construction de l’arbre et la propagation des poids.
O(n log(n)) pour la dissémination des données. Ceci représente un gain de n

logn

par rapport à la méthode présentée précédemment.

1.4 Test pour les applications à grande échelle
Les applications développées aujourd’hui le sont à des échelles de plus en

plus grandes. En effet la puissance de calcul requise est sans cesse croissante.
S’assurer du bon développement de telles applications est primordial à cause de
la complexité de leur mise au point.
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Des solutions existent pour tester ces applications. On peut les distinguer
en trois catégories. Les simulateurs, les émulateurs et les expériences. Dans un
simulateur, l’utilisateur a un contrôle complet sur les conditions expérimentales
puisqu’il va simuler toutes les ressources physiques nécessaires. Toutefois à l’in-
terieur d’un simulateur ne tourne qu’un modèle de l’application ce qui ne per-
met pas de juger l’application finale. A l’opposé se trouve l’expérimentation qui
consiste à lancer l’application à tester et voir comment les choses se déroulent.
Ici le problème pour les applications parallèles et distribuées est l’allocation de
ressources. Il est souvent difficile de pouvoir disposer d’autant de machines que
souhaité.

Au milieu de ces deux méthodes, profitant des avantages de l’une et de
l’autre, se trouve l’émulation, qui consiste à virtualiser les ressources physiques
afin de ne pas être limité et de contrôler l’environnement tout en faisant tourner
l’application finale afin de pouvoir récupérer de vraies données sur son exécution.

Des solutions existent, tout d’abord avec des simulateurs tels que Simgrid [18],
Gridsim [15], Gangsim [27], Optorsim [7], etc. . .Mais le problème principal avec
les simulateurs reste la précision même si ils réussissent à isoler correctement les
processus. Les abstractions faites peuvent cacher des problèmes lors du lance-
ment de l’application et invalider les conclusions du simulateur.

Le nombre de plateformes de test pour les applications distribuées et/ou par-
allèles à grande échelle a récemment augmenté. Toutefois certaines étant des
infrastructures liées à la production comme DEISA [74] ne peuvent être ex-
ploitées. Quant à celles dévelloppées pour la recherche, seule Grid’5000 [16]
peut correspondre à nos besoins.

En effet, Planetlab [22] connecte les noeuds à travers l’Internet, dès lors il
y a un manque de contrôle évident sur les conditions expérimentales puisqu’il
est impossible de suivre les paquets de bout en bout. Les résultats obtenus avec
Planetlab ne peuvent donc être transposés à d’autres environnements comme
montré par [40].

En ce qui concerne Grid’5000 [16], il s’agit de 9 sites géographiques disséminés
en France. L’environnement peut être controllé de manière suffisamment fine.
Toutefois il lui manque des outils pour tester la robustesse des applications
par l’injection de fautes et des outils pour pouvoir sauvegarder les conditions
expérimentales afin de pouvoir les rejouer.

Finalement Emulab [50] est une plateforme d’émulation qui offre de la vir-
tualisation à grande échelle ainsi que de l’émulation réseau bas niveau. Le pro-
jet se concentre sur la complète reconfiguration de la pile réseau. Les machines
virtuelles utilisées au sein d’Emulab sont basées sur les machines Jail de FreeBSD



1.5. CONCLUSION 19

dont elles sont une extension. Tuer une de ces machines virtuelles revient à tuer
un processus ce qui ne permet pas de simuler de vraies pannes machines.

Lors de cette thèse j’ai poursuivi les travaux effectués par Benjamin Quétier
sur un émulateur nommé V-ds [82]. V-ds utilise des machines virtuelles Xen
pour virtualiser les ressources physiques. Ceci permet de limiter le nombre de
machines physiques dont il faut disposer. Les machines communiquent par l’in-
termédiaire de machines BSD pour assurer une meilleure équité.

J’ai rajouté la virtualisation du réseau bas niveau pour émuler des grilles sur
cluster avec l’ajout du protocole EtherIP [52]. Ce protocole permet d’envoyer
des trames Ethernet en utilisant le protocole IP. Pour ce faire j’ai utilisé un outil
FreeBSD appelé Netgraph qui permet d’intéragir avec le réseau de manière sim-
ple et intuitive. J’ai également ajouté un outil qui permet de décrire la topologie
que l’on souhaite utiliser en langage DOT 1 pour qu’elle soit mise en place de
manière automatique.

1.5 Conclusion
Cette thèse propose des solutions à plusieurs problèmes concernant les systèmes

à grande échelle.

Test d’application. Premièrement, avec la poursuite des travaux de Benjamin
Quétier et al [82], la plateforme V-ds permet maintenant de tester des applica-
tions à plus grande échelle en émulant des grilles de calcul sur des clusters grâce
à la virtualisation de la couche 2 du réseau avec le protocole EtherIP [52]. Ce
travail a été publié en conférence internationale [47] sous forme d’article court
ainsi que sous forme de chapitre de livre [46].

Réseaux de capteurs mobiles. Les travaux effectués avec Aline Carneiro-
Viana et al sur la dissémination de données dans les réseaux de capteurs mo-
biles ont abouti à un schéma de distribution proactif qui surpasse le précédent
schéma d’un facteur exponentiel. De plus notre schéma est plus adaptable dans
la mesure où la zone d’arrivée peut être réglée en utilisant un système de poids
sur les noeuds et ce sans surcoût pour l’algorithme.

1. http://www.graphviz.org/doc/info/lang.html
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Lutte conte le Webspam. Plusieurs méthodes ont été présentées dans cette
thèse pour lutter contre le Webspam. Une pour son déclassement et une pour sa
détection. Les méthodes présentées sont légères, ce qui est un caractère indis-
pensable tant le graphe du Web est vaste.

Concernant le déclassement du Webspam, la méthode s’appuie sur le cluster-
ing du graphe car il est évident que les tricheurs construisent des structures avec
un plus fort taux de clustering pour être sûr que la marche aléatoire du PageR-
ank ne s’éloigne pas trop. Notre méthode a donc choisi plusieurs méthodes de
clustering n’utilisant que des informations locales afin de déterminer si cette
approche était viable sur le graphe du Web. Il ressort de notre analyse que 2
méthodes arrivent efficacement à déclasser le Webspam avec une preuve statis-
tique pour l’une d’entre elles.

La méthode présentée pour la détection du Webspam utilise les marches
aléatoires, outil pratique car proche de la méthode utilisée pour calculer le rang
des pages et ne générant qu’un surcoût constant. Lors de la marche aléatoire on
stocke la distance des noeuds au point de départ de la marche. Ensuite on re-
garde la projection statistique de cette marche aléatoire avant de la comparer à
une bibliothèque de motifs de triche.

Lutter contre le spam social. En ce qui concerne le spam sur les sites d’infor-
mation collaboratifs, nous avons présenté une méthode de déclassement du spam
nommée SpotRank et un site Web éponyme de cette méthode. L’algorithme est
basée sur l’application de filtres statistiques afin de forcer les tricheurs à rentrer
dans le rang.
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Nowadays, computerized systems are at a scale so large that it induces issues
regarding the conception, the maintenance, . . . Such systems can be divided into
two categories, databases indexing a tremendous amount of content and compu-
tation infrastructures that gather a huge number of machines (tens of thousands
or beyond). Designing algorithms fitted for this scale is a challenge in itself.
Designers must realize tractable and efficient algorithms. Moreover they should
always keep in mind that the applications have to be fault-tolerant to overcome
the failures that will happen when using a system this huge.

This thesis considers three kinds of problems,

1. While browsing the Web, one should notice that some content seems to
have an inappropriate prevalence. Malicious webmasters try to maximize
their visibility. Their manipulations target search engines’ ranking algo-
rithm or social websites where the content is produced by the community.

2. Large scale networks like sensor networks have increasing sizes as the
cost of sensors becomes cheaper and cheaper. Those networks main ac-
tions consists into gathering and diffusing information. It is of the utmost
importance to utilize efficient data dissemination protocols that minimize
the number of messages exchanged.

3. The development of large-scale applications is fussy. Indeed the applica-
tions need a good mechanism to distribute the computation and must be
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fault-tolerant. Even if the algorithm is proved fault-tolerant, it is really im-
portant to thoroughly assess the behavior of its implementation in the pres-
ence of various adversarial conditions : fail-stop failures or even bizantine
behaviors.

2.1 Handling malicious users on the Web
During the early 2000s, the time spent daily on the Internet has shown an

enormous growth. The online trade knew the same expansion. People realized
that it is possible to earn money on the Web without selling any products. By
proposing interesting content to users, it is possible to earn massive amounts of
money with advertising. This lead to a increasing proportion of users that tried
to augment their visibility on the Web using every means at their disposal.

One of this thesis’ objectives is to limit the influence of those users i.e.,
diminishing their visibility on the Web to propose content fairly exposed to users.
This thesis concentrates on malicious users of social news websites and people
trying to trick search engines’ ranking algorithms by creating many dull pages
(so-called Webspam).

2.1.1 Diminishing the influence of malicious users of social
networks

With the emergence of Web 2.0 1, users became a more prominent part of the
system. It was made easier for surfers to publish content. With the apparition of
blogs and wikis, the user generated content is made more visible on the Web.

Users want to produce and promote their own content. The information can
travel faster using those new media since today anybody witnessing something
important can bring it to the Web via information sites or social networks.

This gave ideas to malicious users, since being on the first page of a site
like digg 2 may redirect a huge amount of traffic to your site. Their objective is
to manipulate the algorithm that rank news by manipulating the votes for their
news in order to appear closer to the top position and secure a place on the front
page. These users may regroup into “cabals” (collusion of users) in order to
maximize the efficiency of their manipulations.

1. http://oreilly.com/web2/archive/what-is-web-20.html

2. http://digg.com
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In chapter 4, I describe a robust voting scheme that prevent spam content
from reaching the front page.

2.1.2 Reducing the boosting effect of Webspam

People quickly understood that it is possible to earn money on the web with-
out selling anything, only through advertising income. Thus they need to attract
as many users as possible to their pages. Since a huge portion of the traffic comes
from search engines, the higher you appear on the result’s list the bigger the
chance is that users will click on the link.

Search engines have many mechanisms to sort pages that appear on the re-
sults lists, the two principals are the relevance and the popularity mechanisms.
The easier to manipulate is the relevance one. But search engines’ countermea-
sures regarding these manipulations are now really effective. Moreover the pages
promoted are usually genuine pages that do not need pertinence boost. The met-
ric often abused by malicious users is the popularity one. It is the PageRank in
the Google search engine.

One way of artificially increasing the popularity of one page p is to create
many pages that will make one outlink towards the target page p. This technique
is deprecated and easy to spot. Cheaters indulge in a weapon race with search
engine regarding the promotion of their pages. They now organise their (most of
time) dull pages into specific structures to maximize the obtained PageRank.

Chapters 5 and 6 present techniques that respectively demote Webspam and
detect pages benefiting from Webspam.

2.2 Large scale networks
Networks have increasing sizes introducing scalability issues into the devel-

opment of applications supposed to run on them. People tend to use more and
more computers for a single computation to solve bigger and bigger instances of
problems. The cost of one unit of a network (either a sensor or a computer) tends
to decrease, therefore it is now possible to use bigger systems reaching sizes in
tens of thousands or beyond.

Applications developed for such systems really need to decrease the amount
of communication between units. Those applications should also be fault-tolerant.
Since they use a huge number of machines, the probability that at least one will



24 CHAPITRE 2. PREAMBLE

fail during the experiment or the computation is high on the long-run. Therefore
users need to thoroughly test their application during the development.

2.2.1 Improving data dissemination in sensor networks
Sensor networks are principally used to monitor a zone. They can be used to

detect abnormalities and send a early warning for natural catastrophes. In order
to do so, sensors collect and report data to decision entities. The size of these
networks increases as the price of a single sensor decreases.

In our model of those networks, sensors are really simple machines with
limited resources. They don’t have any indications regarding the topology of
the networks, each node only knows its neighbors. Nodes’ data is collected by
an external entity that may be either static (the data should be brought to it) or
mobile (travel over the network to collect it).

When the collecting entity is mobile it is important to ensure that it does not
need to cover the whole network to gather all the information. Then the network
should possess a decent data dissemination scheme to ensure that the data is well
distributed over the recuperation zone.

I present in chapter 8, a new data dissemination scheme that can be used in
wireless sensor networks to report the data. It requires a number of exchanged
messages much smaller than previous approaches.

2.2.2 Realistic evaluation of parallel and distributed
applications

Developers of large scale applications, for clusters and grids for example,
have to face many issues while developing. They must ensure that, while attain-
ing high performances in terms of computation steps, the computation must end
correctly. It is well known that messages will be lost or altered and machines
will crash at this scale.

There exists several ways to ensure that an application will be fault-tolerant.
Developers may use a proved algorithm, verify the model of their application,. . .
But in the end it is of the utmost importance to test the written application since
some bugs may have slipped during the development. The testing phase must be
as extensive as possible to guarantee that the application will behave well in the
presence of a maximum of adversarial conditions.

I present in chapter 9 a testbed for large scale systems that authorizes the
user to test his application against failures at both machines and network level.



Première partie

Fighting malicious behaviours on
the Web

25





C
H

A
P

I
T

R
E

3
INTRODUCTION

The World Wide Web [9] represents a huge data collection organised in
Web pages. Web pages are accessed using the HyperText Transfer Protocol [30]
(HTTP) and connected through hyperlinks. The navigation inside this collection
is made almost exclusively through search engines.

At the beginning of the 2000s, the commercial Web arises. There are two
ways of making money on the Web : the first is through a commercial website
where you sell products online. It is also possible to earn money without anything
to sell, only by displaying ads on your websites. You can be rewarded either after
a sufficient number of display of the ads or at each click made on the ad by a
visitor.

On the Internet the majority of earnings are made with advertisement, for reg-
ular websites as well as for search engines. This could be explained by Google’s
strategy that bases its income mostly on Adwords. Adwords is an application
where sellers bid on search words so their publicity will appear when those
words are typed in Google if they are amongst the highest bidders. Everybody
wants to maximize their profit, and it is basically proportionnal to their number
of visitors. Genuine websites need to increase their visibility on the Web while
search engines need to secure the loyalty of their users.

In order to do so, webmasters need to provide users with interesting and
popular websites. Therefore they need to make sure no cheater makes his way
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up to the top of their ranking using malicious techniques.
With the advent of Web 2.0 [79], Internet users got more control on the ac-

cessible content on the Web. It has eased the cheaters becoming more visible on
the Web since they could “steal” links, i.e. force a url to appear on a page, in
blogs comments for example.

Malicious users tend to apply several techniques to maximize their visibility,
the first one being the creation of dull pages which only objective is to create
popularity that will be directed to a specific target page. This manipulation is
referred to as Webspam. It is important to cheaters that these pages are indexed
by search engines, that’s why they “steal” links over the Internet.

Another way to gather traffic is through collaborative websites, where users
propose content and vote for content they like the most. All the content is then
sorted according to the votes and the top news are displayed on the front page of
the website.

I designed with Sylvain Peyronnet a robust voting scheme for social news
websites called SpotRank. This scheme voids the effects of the attacks made by
cheaters on collaborative news websites. It was implemented in a website 1 de-
veloped by Guillaume Peyronnet. SpotRank was presented at the 4th Workshop
on Information Credibility on the Web (WICOW 2010) [60] in conjunction with
19th World Wide Web Conference (WWW 2010).

Fighting Webspam is a weapon race between search engines and cheaters,
each side constantly re-enforcing its arsenal. Techniques to detect or demote the
effects of Webspam have to have a low computational cost because the graph is
huge and evolve to remain efficient over time. In chapter 5, I describe a method
to demote the effects of Webspam using lightweight clustering techniques. This
work is published in the proceedings of the ninth international Conference on
Web Intelligence (WI 2010) [61]. This work is co-authored with Sylvain Pey-
ronnet.

I also present in chapter 6 another method that detects pages benefiting from
Webspam using random walks from suspected nodes. This work is again realised
with Sylvain Peyronnet and will be published in the proceedings of the 1st Inter-
national Symposium on Web Intelligent Systems & Services (WISS 2010) [62]
with the 11th International Conference on Web Information System Engineering
(WISE 2010).

The following introduction is organised as follows. In section 3.1 the func-
tioning of collaborative news websites and their weaknesses to cheaters’ attacks

1. http://www.spotrank.fr
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are presented. Studies and ranking methods for social websites are introduced in
section 3.2. Section 3.3 focuses on Webspam. In section 3.4 existing methods to
fight Webspam are presented. Last, sections 3.5 and 3.6 introduce some of the
tools used to fight Webspam and social spam.

3.1 Collaborative news websites
In the last years, the way people interact with each others on the Web has

drastically changed. Websites now provide information which is an aggregation
of user-generated content, generally filtered using social recommendation meth-
ods to suggest relevant documents to users. The most known example of such a
website is Digg 2. This is a social news website : people share content they found
on the web through the Digg interface, then users can vote for the news they like
the most. Voting for a piece of news is then considered as a recommendation,
and (according to the result of a non disclosed algorithm) news with a sufficient
number of recommendations are displayed on Digg’s front page.

Digg has been launched in November 2004, and since then numerous Digg
clones (generally denoted as Digg-like) were created by webmasters. This huge
success can be explained by the amount of traffic such a website aggregates and
redistributes. Indeed, being on the front page of a website such as Digg seems
to be very interesting since repeated testimonies amongst webmasters state that
thousands of unique visitors are obtained within one day for a website on the
front page of Digg (or similar sites). Since most websites follow an economic
model based on advertisement, obtaining unique visitors is the best way to im-
prove the income. It is then tempting for a user to use malicious techniques in
order to obtain a good visibility for his websites.

A malicious technique is explained in details by Lerman in [64] where she
recalls the Digg 2006 controversy. This controversy arose when a user posted
on Digg an analysis proving that the top 30 users of Digg were responsible for
a disproportionate fraction of the front page (later studies ensure that 56% of
the front page belong to the top 100 users only). This means that the top users
are acting together in order to have their stories (e.g. Websites they support)
displayed on the front page. The controversy led to a modification of the Digg
algorithm in order to lower the power of this so-called bloc voting (collusion
between a subset of users).

2. http://digg.com
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Since 2006, malicious users became more and more efficient (see for instance
the paper of Heymann et al. [49]). Cabals (collusion of large group of users that
vote for each others) have been automatized using daily mailing lists, some users
post hundreds of links in order to flood the system, others have several accounts
and thus can vote for themselves (using several IP addresses) etc. To the best of
our knowledge, no social news website implements a robust voting scheme that
avoids the problem of dealing with malicious users while still providing a high
quality of service (i.e. providing relevant news to users).

3.2 Fighting social spam
Regarding the analysis of social news websites there are only a few research

papers available. The work done by Lerman (and her coauthors) in many pa-
pers [64, 66, 65, 81, 63] is probably the most extensive done in this field. These
papers analyse the behavior of users and content in social sites such as Digg and
Flickr 3. Abstract modeling of users is done and allows to infer the dynamics of
users’ rank [63], but also to predict which news can obtain good ranking accord-
ing to the first votes [66]. However, this work is analytic, its goal is to understand
how social news websites work. We, on the other hand, aim at designing a robust
voting scheme in an adversarial environment, thus our approach is normative.

In their paper [49], Heymann et al. present a survey on spam countermea-
sures for social websites. They sorted three categories of such countermeasures :
identification-based methods (i.e. detection of spam and spammers), ranked-
based method (i.e. demotion of spam) and limit-based method (preventing spam
by making spam content difficult to publish). Clearly SpotRank falls in the scope
of ranked-based method since our goal is to reduce the prominence of content
that benefits from malicious votes.

Bian et al. [11] describe a machine learning based ranking framework for
social media that is robust to some common forms of vote spam attacks. Some
other work focusing on manipulation-resistant system, and using a notion close
to the one of pertinence (this is our metric to define the relevance of users and
content), can be found in [85].

A related field of research is the detection of click fraud in the Pay Per Click
(PPC) advertising market, but also in Web search ranking. In PPC, webmasters
display clickable advertisements on their website and are paid for each click
going through the ad. In Web search ranking, the more a link to a website is

3. http://www.flickr.com/
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used, the higher the site is ranked. For instance Jansen [55] give details of the
impact of malicious clicks in PPC while Metwally et al. [72], Immorlica et al.
[53] give strong analysis of the phenomenon together with algorithms to cope
with it. Radlinski and Joachims [83] focus on randomized robust techniques that
infer preferences from click-through logs.

The problem of providing the users of a community with a good selection
of news seems to be a recommendation problem. Cosley et al.[24] study the re-
lation between recommendation systems and users, while Lam and Riedl [59],
and O’Mahony et al. [78] address the problem of malicious users and robustness
of systems. However, recommendations by friends has been proven to always be
better than recommendations using automatic systems (see for instance the pa-
pers of Sinha and Swearingen[92]). To overcome this problem, researchers from
the recommendation systems field introduce the notion of trust as a reflection of
users’ similarity.

In this thesis, I focus on completely different techniques that demote votes
that are malicious, or done by users known to be malicious. The approach I de-
veloped together with Sylvain Peyronnet does not use machine learning methods
and is based on the notion of pertinence. It is worth noting that despite the lack of
research papers in this field, there are probably a lot of undisclosed work going
on in social news websites’ teams.

3.3 WebSpam presentation
Notions and techniques introduced in the second part of this section are

from [38] and [26].
Search engines rank Web pages according to two kind of metrics while deliv-

ering results to the user : relevance and popularity metrics. The relevance score
depends on the requests made by the user and is self-contained within each Web
page. The popularity mechanism is on the other hand content independent and
is most of time structurally related. An hyperlink from page p1 to page p2 means
in a human context, that webmaster of page p1 recommends page p2. It is similar
to a vote and many popularity mechanisms rely on hyperlinks to determine the
popularity of one Web page.

Since the algorithm behind each search engine is broadly known, many users
who want to maximize their exposition try to maximize their score. This lead to
a new field of research called Search Engine Optimization (SEO). SEO consists
of all fair techniques, ie. approved by search engines, to improve the ranking of
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a website or of a particular Web page. It tries to acquire “votes” through fair
referencing and doesn’t attempt to play the algorithm.

S

S

S

S

(a) Simplest example of spamdexing
where Webspam is marked with an S and
the target page is in red.

S

S

S

S

(b) Structure to maximize a unique
page’s pagerank

FIGURE 3.1 – Structures to increase the pagerank of one target page.

Other webmasters are ready to use whatever technique that helps increasing
the ranking of his Web pages. Techniques not considered SEO are often referred
to as spamdexing. Spamdexing can take many forms. The first one and the easiest
is to try to trick the algorithm on the relevance of a specific Web page regarding
a certain request. Multiplying the occurrences of keywords, providing a different

5 4 3 2 1

FIGURE 3.2 – Optimal structure to maximize the pagerank of a set of 5 pages.
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page for crawlers and users, . . .These techniques are nowadays well-known by
search engines and there exists many techniques ([76] for example) that void
their effects so they do not affect anymore the ranking of one page.

Then malicious webmasters try to increase their popularity instead of their
relevance. It is worth noting that profitable pages are genuine pages and not
forged Webspam. There are three kinds of pages on the Web for a webmaster.
Inaccessible pages that she can not alter in any way, accessible pages which can
be slightly modify by her like forums or blogs through their comments and own
pages that belongs to the webmaster and that she shapes like she wants. The
objective of the webspammer is to steal a maximum number of links from ac-
cessible pages in order to index her Webspam in search engines. They may use
several techniques like creating honey pots, technical pages like Unix documen-
tation for example, that are naturally linked by users. They can also infiltrate web
directories, steal links from blogs’ comments, forums or wikis. They also partic-
ipate in link exchange between spammers or buy domains when they expire to
hijack links made to these domains.

Indexing the Webspam is just one step required to artificially increase the
pagerank of the target page(s). The Webspam has to be organised into a specific
structure to maximize its efficiency.

In order to increase the popularity score of one particular page, cheaters cre-
ate many dull pages that will be organised in a specific architecture to maximize
the popularity while avoiding automatic detection. Fig 3.1a represents the sim-
plest architecture a cheater can put in place to increase its score. He creates as
many spam pages as possible and all these pages only make one hyperlink to the
target page. Dashed lines represent stolen links from accessible pages.

This structure is easily identifiable and easy to counter. It is deprecated nowa-
days and can not be employed at large scale. Cheaters make these structures
evolve constantly. Once one has been discovered and made inefficient by search
engines, it is discarded and slightly modified to pursue its objective.

In [38], Gyongyi et al propose the optimal structure to increase the pagerank
of a single page. This structure is presented in Fig 3.1b. It is very similar to the
structure in 3.1a, the difference being that links are mutual. Indeed spammers
realized that the PageRank needs to circulate in order to grow.

De Kerchove in [26] solves the problem of maximizing the pagerank of a set
of pages. The optimal structure for k pages numeroted from 1 to k is as follows,

– ∀1 < i ≤ k, i links to i− 1,
– ∀i ∈ [1, k],∀i ≤ j ≤ k i links to j,
– 1 links to a page outside of the set (represented in blue in Fig 3.2).
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This structure is represented for a set of 5 pages in Fig 3.2. To maximize the
pagerank of several pages, De Kerchove maximized the time’s expectancy the
random surfer will spend on these pages thus leading to an optimal structure.
Both papers are exhibiting optimal structures for this purpose. However, since
these structures have a very rigid architecture (thus being easy to detect), spam-
mers are constructing less efficient, but slightly different structures. As we will
see in the next sections, our method performs well even on slightly modified
spamming structures.

3.4 Fighting Webspam
Since search engines are based on well known popularity metrics such as

PageRank [80], spammers are trying to artificially boost their websites with re-
spect to these metrics. At the same time, Webspam has been extensively studied
since it is really important for search engines to be able to deal with it.

More recently the interest was concentrated on the evolution of Webspam and
Chung et al. proposed a link spam study in [23] to see how it evolves through a
series of Web snapshots.

With the apparition of Webspam, many techniques were developed to deal
with its effects in order to ensure the user with a fair ranking. There are two
basic types of methods to deal with Webspammers : the first one is detection, i.e.
identifying Webspam or pages benefiting from it and demotion whose objective
is to void the effects of such techniques without explicitly identifying Webspam.

In the spirit of the first category, Ntoulas et al. propose to identify spam
through content analysis. The method use several criteria presented in [76]. Un-
fortunately, this method does not scale up since the Web is growing too fast and
studying every page in depth is way too costly. Other approaches to identify
cheaters on the Web rely on the structure of the Web and not on the content of
the web pages.

The paper [37] by Gyongyi et al. proposes a method whose goal is to identify
link spam through the estimation of pagerank coming from spam pages for every
node. It is first required to find a set of “good” pages and then run a biased
PageRank to find the part of all pages’ pagerank that come from “good” pages.
The drawback of this method is that it requires a preprocessing human step where
people label pages as spam or non-spam.

Benczur et al. (see their paper [8]) propose a fully automatic detection method
for Webspam by observing the distribution of contributing pages to suspected
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pages. Those who appear to have a biased distribution are considered as spam
by their method.

Authors of [39] (resp. [58]) propose to give a Trust (resp. AntiTrust) score
to pages to fight Webspam. These methods oblige the user to find a set of pages
she trusts (resp. distrusts) and then use a propagation scheme a la PageRank. It
is then tricky to find a good seed set that will cover the whole graph. The notion
of TrustRank was then refined by Wu et al. to add topicality in [100]. Authors
of this paper first partition the seed set into topically coherent groups before
computing the TrustRank for each topic. The final Trust score of one page is a
combination of its topic-specific Trust scores. This approach improves the result
obtained with TrustRank regarding the demotion of Webspam.

Andersen et al. in [2] propose to compute a Robust PageRank by first ap-
proximating the supporting set of each page i.e. the set of pages that contribute
to its pagerank.

3.5 Random walks
A random walk on a graph consists in a simple algorithm that travels the

graph. The next step of the walk is chosen uniformly at random between the
neighbors of the current node. When the graph is finite, it is equivalent to a
Markov Chain. A Markov chain is a random process where both time and space
are discrete. Markov chains presented in this section are from [13, 75].

Let V be a countable set representing the nodes (called states) ni of the graph.

Definition 1 Let (Xn)n≥o a series of random variables valued in V . (Xn)n≥o is
a Markov chain if

P(Xn = j|Xo = i0, . . . , Xn−2 = in−2, Xn−1 = i) = P(Xn = j|Xn−1 = i)

for all n > 0 and all n-tuple of states i0, . . . , in−2, i, j for which both sides of the
equality are defined.

A Markov chain is a series of random variables where the value of one variable
depends only on the value of the one before and not on the rest of the history. A
Markov chain is said to be homogeneous if ∀n,P(Xn = j|Xn−1 = i) depends
on i and j and not n. In this case, it is possible to define the transition matrix
P = (pij)i,j∈V associated to the Markov chain where pij = P(Xn = j|Xn−1 =
i). In the following we always consider homogeneous Markov chains.
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FIGURE 3.3 – Markov chain and its associated transition matrix.

The transition matrix P may be represented by its transition graph G whose
nodes are states in V . In G there is an arc i → j if and only if pij > 0. In this
case, the arc is labeled by pij . Fig 3.3 represents a Markov chain together with its
matrix. It is interesting to notice that Markov transition matrices are stochastic,
i.e.
∑

j pij = 1.

It is interesting to study the probability (noted p(n)ij ) of going from i to j in n
steps in a Markov chain.

p
(n)
ij = P(Xn = j|X0 = i) = P(Xn+k = j|Xk = i) (n ≥ 1, k ≥ 1)

The n-steps transition matrix is noted P (n) and it can be shown that P (n) = P n.
Let’s now introduce the state probabilities : πk(n) = P(Xn = k). The dis-

tribution of Xn can be written as vector with π(n) = (π1(n), π2(n), . . . ) where∑
k πk(n) = 1. We then have,{

π(n+ 1) = π(n)P
π(n) = π(0)P n ∀n ≥ 0

The results above allow us to say that a Markov chain is completely defined if
both its transition matrix and the distribution of X0 are known. While speaking
of the probabilities πk(n) = P(Xn = k) of a Markov chain regarding the number
n of steps, one is studying the transient state of the random process. Generally,
the distribution of Xn depends on the time and the initial distribution π(0). If the
distribution π(n) converges, as n tends to the infinite, towards a limit distribution
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FIGURE 3.4 – Example of a Markov chain.

noted π, then π is the steady-state of the stochastic process and does not depends
on the initial distribution π(0).

If limn→∞(π(n)) = π exists, independently from the initial distribution and
if π is a probability distribution, we say that the Markov chain (Xn)n≥0 con-
verges towards π or has a limit distribution π.

A discrete probability distribution π is stationary regarding the stochastic
matrix P if πP = π. A Markov chain is stationary if the distribution π(n) of the
random variable Xn does not depend on n, i.e π(0) is a stationary distribution
of the random process. The following theorem concerns the existence of such
stationary distributions.

Theorem 1 For a finite Markov chain, there always exists at least one stationary
distribution. This is not the case when the state’s space is infinite.

To formulate the uniqueness criterion, we must first introduce a classification on
the states of a Markov chain.

Two states are communicating if we can go from i to j and from j to i, i.e
∃m,n ∈ N, p

(m)
ij > 0 and p(n)ji > 0. It is then possible to define an equivalence

relation on the set V and then we partition V in disjoint classes, V = C1 ∪C2 ∪
· · ·∪Cr. Any pair of states from the same class are always communicating while
states in different classes never communicate. It is then possible to distinguish
two kinds of classes,

– A class is transient if it is possible to go outside of the class, but in this
case the process can never re-enter this class.

– A class is recurrent if it is impossible to go outside of the class.
The uniqueness criterion is in the following theorem,

Theorem 2 A finite Markov chain has a unique stationary distribution if and
only if it has only one recurrent class.

In Fig 3.4, {1} is a transient class while {2} and {3, 4} are recurrent classes.
Since there is strictly more than one recurrent class, there is not an unique sta-
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tionary distribution. The computation gives that xP = x if x = (0, 1− 2α, α, α)
with α ∈ [0, 1/2].

If the unique recurrent class of a Markov chain C = V , all states are com-
municating, the Markov chain is said to be irreducible.

Random walks are part of the computation of the PageRank of Web pages.
They mimic the behavior of the random surfer starting from a random page and
following hyperlinks to continue surfing. To calculate the PageRank, the random
surfer can at each step, either choose an hyperlink uniformly at random from all
present on the current page with probability p or with probability 1 − p choose
any page from the index uniformly at random. This prevent the random surfer to
be stuck on one page without any outlink.

My hypothesis is that random walks can provide useful structural informa-
tion for Webspam demotion or detection. Our first approach was not precise
enough. It consisted in identifying link farms using random walks with a limited
storage capacity, i.e. random walks that remember their k last steps. Using those
traces we looked at the frequency of appearance of each node in the memory,
i.e. the number of times a node was visited during the walk. Depending on the
number of nodes found with a high frequency in the random walk, we tried to
dissociate good nodes from spam ones. A more elaborate version, where random
walks do not store nodes’ id but their distance to the starting point of the walk is
presented in chapter 6 that proves the validity of the hypothesis.

3.6 Clustering

The objective of clustering on a graph is to regroup nodes that are densely
connected, i.e. nodes between which exist many paths. This corresponds to groups
of pages on the Web. Fig 3.5 represents the execution of a clustering algorithm
on a small graph where clusters are identified through ids and colors.

There are many ways to regroup nodes and graph clustering was exten-
sively studied [90]. Two widely used techniques are the Markov Clustering Tech-
nique [94] and the Edge Betweenness Clustering [35]. I present both techniques
in the remain of this section and explain why while efficient on smaller graphs
they are of no use on the Web graph.



3.6. CLUSTERING 39

2

1

1

1

1

2

2

1

2

2

2
3

3

3

3

3

FIGURE 3.5 – Clustered graph.

3.6.1 Edge betweenness centrality
This approach proposed by Girvan and Newman in 2003 [35] is based on the

“edge betweenness” which is an extension of the “node betweenness” centrality
notion. This notion first appeared in the field of social interactions [98] to de-
termine the role of actors (nodes) inside a network (graph), the objective being
to identify communities of sharing interest. This notion is based on the shortest
paths in a graph. Between any pair of nodes i,j it may exists several paths from
i to j. Some of them may be paths of shortest length (in number of nodes on the
path). The intuition is to regroup “central points” in the graph to regroup nodes.

The “betweenness centrality” between i and j of node k is the number of
shortest paths from i to j passing through k (noted σij(k)) divided by the number
of shortest paths form i to j (σij). Then the “node betweenness centrality” of
node k is the sum of its betweenness centrality for all possible pairs of nodes.

CB(k) =
∑
i 6=j

σij(k)

σij

where i 6= k and j 6= k.
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Girvan and Newman extended this notion to edges. The “edge betweenness
centrality” of edge {k, k′} is the following sum over all pair of nodes i, j different
from both k and k′

CB({k, k′}) =
∑
i 6=j

σij({k, k′})
σij

where σij({k, k′} represents the number of shortest paths from i to j that contain
the edge {k, k′}.

Consider a graph with two clusters, sets of nodes densely connected, with
few connections between clusters. Shortest paths between nodes in different
clusters must take the few edges connecting the clusters. Those edges are then
provided with a high “edge betweenness centrality”. The EBC method is based
on this idea. By iteratively removing edges with decreasing centrality, clusters
will be disconnected. The method to discover clusters is an algorithm in two
phases

1. Betweenness computation
Compute the edge betweenness centrality of all edges. Remove the one
with the maximal score and recompute the centrality for all edges until
they are no more edges in the graph.

2. Cluster construction
At the beginning every node is its own cluster. Arcs between clusters are
added in the inverse order from which they were removed in the previous
phase. If an arc joins two nodes in different clusters they merge.

The second phase produces iteratively sets of clusters on the graph. By adding
arcs in the inverse order from which they were removed, arcs added first must
be intra-clusters arcs while arcs added in the end are inter-clusters arcs. It is
important to determine the moment the second phase stops adding intra-clusters
arcs and begins connecting clusters. Girvan and Newman propose a metric called
“modularity”,

M(C) =

NC∑
c=0

[
dc
L
−
(
lc
L

)2
]

where NC is the number of clusters in a set C, dc is the number of intra-cluster
arcs in a given cluster c, lc is the total degree (number of arcs) of nodes in the
cluster c and L the total number of arcs in the graph. The modularity is computed
on the raw graph before any arc removal. This metric is equal to 1 if all arcs in
C are intra-cluster arcs and 0 if the proportion of intra- and inter-cluster arcs is
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equal. The optimal set of clusters is thus the one with the maximal modularity in
the second phase of the algorithm.

This method belongs to the ones that scale up best reaching 100, 000 arcs
graphs. We are far from the size of the Web graph and thus this method won’t
scale up to our needs since it is impossible to compute the “edge betweenness
centrality” for every edge of the graph and the modularity in the second phase.
Those operations require a global knowledge of the graph and have a too high
complexity to be computed as often as required by the fight against Webspam.

3.6.2 Markov clustering technique
The MCL method simulates stochastic flows to partition the graph into clus-

ters. It is a fast approach that is only limited by the number of nodes in the graph.
It was designed by Stijn van Dongen [94].

As said previously clusters are groups of nodes tightly connected. Thus there
should exist many paths of bigger length between nodes that belong to the same
cluster. The number of these paths is expected to be bigger that the one between
two nodes in different clusters. From another perspective, random walks in a
graph have a few chances to leave a cluster. The intuition behind the algorithm
is the same as the human behavior, find huge “blocks” densely connected with
few connections between blocks.

The MCL method finds the cluster structure of a graph by using a bootstrap-
ping technique. The process deterministically computes the probabilities of the
random walks in the graph, using two operators transforming a set of probabil-
ities into an other. This is made possible by the use of column stochastic (or
Markov) matrices (see previous section).

The MCL algorithm simulates random walks on the graph by alternating two
operations : the expansion and the inflation, both parameterized. The expansion
operator consists in taking the stochastic matrix to the power k using classic ma-
trix multiplication. The inflation operator Γ takes the matrix to its rth Hadamard
power with a normalization step afterward to keep the matrix stochastic i.e. cells
of the matrix are probability values.

A column stochastic matrix is a non-negative matrix whose columns sum to
1. Considering a column stochastic matrix M and a real r > 1, the result of the
application of the inflation operator is the following,

Γr(Mij) =
(Mij)

r∑
i(Mij)r



42 CHAPITRE 3. INTRODUCTION

With a coefficient r > 1 it is easy to see that the application of the inflation
operator will favor more probable walks for a particular node (column of the
matrix).

The expansion phase computes the probabilities for random walks of longer
length thus changing the values of the matrix. The value Mij being the probabil-
ity that a random walk starting in j stops in i after a given number of steps de-
pending on the parameter k of the expansion. Since nodes in clusters are densely
connected, the probability will be much higher that a random walk starts and
stops in the same cluster that it takes an inter-cluster arc. Thus the inflation op-
erator will increase the probability of intra-cluster paths and lower the proba-
bility of random walks using inter-cluster arcs. This is done without any prior
knowledge about the organisation of the graph in clusters but simply due to the
presence of clusters in the graph.

Finally iterating the expansion and the inflation operators will separate the
graph into groups of nodes that will be interpreted as clusters. Classically the
value of the parameters are k = 2 and r = 2. Then the MCL algorithm can be
written as it appears in Fig 3.6.

Input : graph G
Parameter : integer k
Parameter : real r
add loops in G
M1 = stochastic matrix(G)
while(diff)
M2 = (M1)

k (expansion)
M1 = Γr(M2) (inflation)
diff = difference(M1,M2)
end while

FIGURE 3.6 – MCL algorithm

Explained in the language of stochastic flux, the expansion increase the flux
inside the clusters while the inflation phase remove the flux between the clusters.
Expansion and inflation are to be used alternatively until a steady state is reached.
A steady state corresponds to a double idempotent matrix, i.e a matrix that does
not change with any more application of both the expansion and the inflation
operator. The graph associated with such a matrix is composed of oriented con-
nected components. Each component is interpreted as a cluster, is star-shaped,
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with an attractor at the center and every member of the component linking to the
attractor. Clusters with more than one attractor may appear or nodes belonging
to several clusters. The fact that clusters may be overlapping can be an advantage
in certain situations where nodes must be connected to several clusters without
belonging to any of them.

Regarding convergence, it can be proven that the process simulated by the
MCL algorithm converges in a quadratic time to a steady state. In practice the
algorithm starts to converge after a few iterations (around ten). The global con-
vergence is something very hard to prove but it can be conjectured that the algo-
rithm always converges when the input graph is symmetric. As for today there is
no mathematical evidence that the algorithm actually converges.

A really important thing about this algorithm is that it identifies the clustered
structure of the graph via the trace left by this structure on the flux process.
The algorithm is fast and supports huge graphs (up to hundreds of thousands
of nodes, the limitation being the matrix multiplication). Both parameters k and
r allow to set the clusters granularity. Mathematics associated with the MCL
algorithm show that there is an close relationship between the simulated process
and the clustering structure of the graph. The formulation of the algorithm is
simple and elegant.

From the definition of this algorithm, one can see that it is really different
from others based on links systems. Indeed its behaviour is probabilistic and its
termination based on the notion of convergence of a random process. But still
this algorithm needs to perform matrix multiplications and therefore cannot be
used on the Web graph. I will present lightweight clustering methods in chapter 5
that regroup nodes to fight Webspam.
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MALICIOUS BEHAVIOURS IN

SOCIAL NEWS WEBSITES

This chapter presents SpotRank, which is our answer to malicious users on
social news websites. SpotRank is a robust voting scheme for social news web-
sites and the name of the website that implements this scheme.

This chapter first introduces the design of the SpotRank algorithm which is
a set of heuristic techniques whose objective is not to detect and suppress ma-
licious voting behaviors in social news website, but rather demote the effects
of these behaviors, thus leading to lower the interest of such manipulations for
spammers. SpotRank is built over ad-hoc statistical filters, a collusion detection
mechanism and also over the computation of the pertinence of voters and pro-
posed news. The pertinence is a metric corresponding to the relevance of voters
and news in the system. It will be defined later.

In a second step, I present a strong experimental analysis website that im-
plements this algorithm and shows evidence of the efficiency of the approach,
both from a statistical and human point of view. This analysis is twofold : I give
evidence that using SpotRank maintains a behavior for the social news website
which corresponds to a regular behavior, and also provide a study of the per-
ceived quality of the algorithm on 114 users of the experimental platform (via a
comparison with others french social news websites).

45
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4.1 SpotRank algorithm
In this section I first present the framework on which Spotrank is built to-

gether with its principle. I then describe independently each step of the algo-
rithm.

4.1.1 Framework and principle
In this chapter, I consider that the voting system (SpotRank) is used by a

community of users u ∈ U the set of all users. Any user of the community can
propose his own news (or content), which we will call spots. The set of spots is
denoted by S . Any user of the community can vote for a spot. A vote is a triple
(u, s, v) where u, v ∈ U and s ∈ S . The set of all votes is noted V . For the sake
of clarity we introduce some notations :

Vu = {(w, s, v) ∈ V | w = u}

Vuu′ = {(w, s, v) ∈ V | w = u, v = u′}

Vs = {(u, t, v) ∈ V | t = s}

Vu denotes votes made by u, Vuu′ the votes made by u for a spot proposed by
u′, and Vs the vote made by all users in favor of the spot s. This modeling is rather
theoretical, in practice we have access to a lot more information on users, votes
and spots. In the following, we will access this information through functions
that will be either clearly defined by the context or explicitly just before their
use.

We can now schematize the SpotRank method. It is important to know that
it is based on two key notions. The first one is that two votes do not necessarily
have the same value. Indeed, each vote will be assigned, depending on many
factors, a score. This will induce a score for each spot (the sum of the score of
each vote in favor of this spot). The higher the score of a spot, the closer to the
first place (e.g., the top of the front page) is the spot. A large part of SpotRank is
the score computation mechanism. The other key notion is the pertinence. The
pertinence of a user depends on the pertinence of the spots he voted for, and vice
versa. A part of the score’s update of a spot will depend on the pertinence of the
user that votes for this spot. Last, an additional mechanism is used in order to
avoid large scale manipulations : a method to detect cabals (ie., group of users
that repeatedly vote one for each other).
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FIGURE 4.1 – Principle of our method

Finally, figure 4.1 depicts the voting process of SpotRank for a given spot.
The method is working as follows :
A user proposes a spot. The score of this spot is initialized according to several
criteria (all related to the known behavior of the user).
Users vote for the spot. Each vote induces an update on the spot’s score and
pertinence, but also of the pertinence of users that previously voted for this spot.
The score of the spot is then used by a social news website in order to rank
published content.
Periodically, an algorithm that detects collusion between users outputs clusters
of potential malicious users. These clusters are used for computing the score of
a vote.
To avoid old very strong spots to stay forever at the top of the ranking, the score
of a spot is reduced periodically.

In the following We describe in details each of these steps. Each time a prac-
tical parameter is used, it will be denoted by αi (where i ∈ N) and its real value
in practical applications will be discussed. Actual values are set according to a
back and forth method : a first value is set, the robustness of the method with this
value is tested, the value is modified if necessary, until a good quality of result is
reached.
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4.1.2 Proposing a spot
The first step of the method is the proposition of a spot. The main threat at

this point for social news websites is the system flooding by some malicious
users.

When a user proposes a spot it is necessary to initialize its score. In an ideal
world any value can be used for this initialization, but this step will be used
to demote spots proposed by frenetic spot posters. The initial score will then
depend on two factors : first, the frequency at which the user proposes spots and
second, the frequency at which new spots come from the user’s IP address.

More precisely, the initial score of a spot s is calculated with the following
formula :

init score(s) = f(n) ∗ cIP (m),

where n is the number of spots proposed by the user in the last 24 hours, m is
the number of spots previously posted from the user’s IP in the last 20 minutes.
f and cIP are defined as follows :

f(n) =


100 if n < α0

50 if α0 ≤ n < 2α0

10 if 2α0 ≤ n < 4α0

0 otherwise

and cIP (m) = max
(
0, 1− m

α1

)
.

In practical applications α0 and α1 will be small integers that depend on the
number of visitors of the social news website. We recommend to use α0 = 2 and
α1 = 10.

With this formula to initially set the score of a new spot, the effective “spot
bombing” from spammers is prevented. Indeed the proposed spot’s initial score
will drop fast until it has value zero. The cIP (m) coefficient also helps to track
down spammers that use several accounts to pollute the spot pool. If we add to
a social news website a mandatory identification in order to propose a spot, it
becomes meaningless to use several accounts (IP spoofing is then useless).

4.1.3 Voting for a spot
Once a spot has been proposed to the community it can be “pushed” to the

front page (i.e., put in the top-ranked news). The spots ranking is done according
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to their scores. The voting part is the one requiring the most attention since it is
where the spammers will concentrate all their attacks. We propose a set of filters
whose aim is to counter all the attacks a spammer could think of. The idea here
is simple : a vote has a base value which is the pertinence of the voter. This value
is then modified according to several criteria to provide the actual value of a vote
(its score). The score of the vote is then added to the current score of the spot in
order to obtain its new score.
Base value of a vote : pertinence. The key notion of the voting system is the
pertinence of users and spots. The pertinence of user ui is denoted by pert(ui).
Similarly, the pertinence of a spot sj is pert(sj).

Definition 2 The pertinence of a user without voting history (ie., a new user) is
a constant α3.

The pertinence of a user ui with a voting history is :

pert(ui) =
1

|Vu|
∑

(u,s,v)∈Vu

pert(s),

where

pert(s) =
score(s)

|Vs|
.

The pertinence of a user u is thus the average value of the pertinence of the
spots u voted for. The pertinence of a spot is its score divided by the number of
votes it received (ie., this is the average value of the votes for s). In the experi-
ments α3 = 100 to match the value of a fresh legitimate spot.

It is now possible to define the base value of a vote as the pertinence of the
user that votes. This value is weighted by several coefficients that are described
in the following, each of these coefficients can be seen as a response to a specific
type of attack.
High frequency voting. Most of the time, spammers try to promote a lot of low
quality news. All the gain of their manipulations is more due to mass effect than
to the promotion of only one peculiar web page. Thus they have no other way
of voting than using burst voting. It means that a typical spammer votes for a lot
of spots in a short amount of time. To demote this effect the score of a spot is
weighted by a coefficient freq(u) that depends on the user’s voting frequency.

Definition 3 Let n = |Vu|, freq(u) is defined as

freq(u) =

{
1 if n < 2

min(1, date(vn)−date(v1)
α4∗n ) otherwise
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α4 is the time interval that is reasonable between two votes.
Abusive one-way voting. In order to avoid manipulations’ detection, a typical
spammer uses several accounts : one clean account to propose spots, and several
disposable accounts to vote for the spots proposed by the clean account. To re-
duce the score of votes made in this spirit, a coefficient fp(u, u′) is defined to
take into account the particular frequency of systematic one-way voting from a
user u to a user u′.

Definition 4 Let u, u′ ∈ U , fp is defined as

fp(u, u′) = 1− |Vuu
′ |

|Vu|

With this coefficient, users that vote only for one specific user will see their
vote becoming useless.
Quick voting. Spamming is a large scale activity so it is unthinkable for a spam-
mer to stay a long time on one given website. Their behavior is then to propose
a spot and to quickly vote for it using several accounts. This is not a natural be-
havior since the time interval between the proposition and the vote is too short
for a human to even look at the website associated to the spot.

To avoid quick voting any vote is blocked in the first minute of appearance
of the spot s on the site and after that the value of the vote depends on a stair
function based on date(s) and t the current time. This function (called time) is
defined as follows.

Definition 5

time(s) =


0.3 if t− date(s) < 120
0.5 if t− date(s) < 240
0.7 if t− date(s) < 420
0.9 if t− date(s) < 540
1 otherwise

Multiple avatars and physical communities. As said previously, a typical spam-
mer will have many accounts, sometimes he will also have automatic voting
mechanisms. These voting bots are often located on only a few servers, so they
share the same IP address (or only very few IP addresses). It is then interesting
to have a coefficient that demotes votes for a given spot if they come from the
same IP address. One could object that legitimate users can share the same IP
address. The opinion on this matter is that when legitimate users belonging to
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the same IP address vote for the same spot it is a kind of manipulation (one can
think of students of the same university that vote for one of them).

Therefore, for a same spot, votes coming from the same IP address receive
a decreasing coefficient coeffIP depending on the number n of previous votes
from this IP address :

Definition 6
coeffIP = (α5)

n

In practical applications α5 is a real number between 0 and 1 (typically 2
3

in this
case).
Avoiding the voting list effect. The main threat for social news websites is the
existence of cabals. A cabal is a group of people that unite their efforts in order
to promote their own spots. There exists highly organised cabals whose goal is
to manipulate ranking of social news websites. This is classically done through
daily mailing lists. The daily mail contains a list of news for which votes are
required. Users of such lists can propose their own news to the list depending,
most of the time, of the number of votes they made for other members of the
cabal.

In the next subsection I will present the method for detecting cabals (that are
called clusters). But here I assume that I already detect these clusters. Such a
cluster is a list of users that periodically vote one for another.

To slow down the effect of the cabals I proceed as follows : if a user u votes
for a user u′ and both users are in the same “cluster” then the value of the vote is
weighted by the inverse of the size of this “cluster”. This leads to the definition
of the following coefficient.

Definition 7 Let cluster(u) be the cluster to which user u belongs (if any), then :

clust(u, u′) =

{
1 if cluster(u) 6= cluster(u′)
1

|cluster(u)| otherwise

Summary : computation of the actual score of a vote. We can now define
the score of a vote. This is actually the base value score weighted by all the
coefficients defined above.

Definition 8 The score of a vote v from the user u for the spot s posted by the
user u′ is :

score(v) = pert(u) · freq(u) · fp(u, u′) · clust(u, u′) · time(s) · coeffIP
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It now remains to define the score of a spot according to this definition.
Computation of the score of a spot. The score of a spot is simply the sum of
all votes’ score for this spot and of the initial score of the spot. This quantity is
however weighted by a multiplicative coefficient that depends on the age of the
spot. This time decay is used to promote new spots against old strong spots (it is
not interesting that popular news stay forever on top of the ranking).

Definition 9 The score of the spot s ∈ S is defined as :

score(s) = time decay(s) ·
(
init score(s) +

∑
v∈Vs

score(v)
)

The score of a spot s is updated each time a user votes for it, but also period-
ically since the value of time decay varies over time. In practical applications, I
define the time decay as :

Definition 10 Let d be the age (in days) of the spot.

time decay(s) =

{
1 if d ≤ 2
0.8d if d > 2

The decay starts after 2 days to give fresh spots an advantage over old ones.
The value 0.8 comes from an experiment on the best value to ensure a sufficient
turn-over on the front-page of the social news website.

On a classical social news website using SpotRank, all spots are ranked ac-
cording to their score (the higher the better).

4.1.4 Detecting cabals
In this subsection, I present the algorithm for the detection of collusion of

voters. It is a fair idea to use the weighted directed graph of votes (nodes repre-
sent voters, arcs correspond to votes and weights to the number of votes between
two users). The standard approach to identify groups of users in this graph is then
to cluster it. State-of-the-art techniques such as the ones of [94, 35] are not ef-
ficient on large graphs. The graph underlying a social news website can quickly
attain a huge size, so I cannot use these clustering techniques.

Instead, I propose here to regroup people that massively vote between them-
selves. Therefore I use the algorithm presented in Fig. 4.2 that should be run
regularly to identify new cabals and actualize the existing ones.
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Collusion detection for user u
1. Let E = {(v, k)/(Vu,v 6= ∅ ∧ k = |Vu,v|}

Sort E according to k in decreasing order.
2. Put the first p users (according to this sorting) into a set
Favp(u).

3. Sort alphabetically the set Favp(u) with u’s ID included.
4. ∀v ∈ Favp(u), if |Favp(u) ∩ Favp(v)| > α6 then u and
v are in the same group.

FIGURE 4.2 – Clustering algorithm

This algorithm should be run for each user in order to assign this particular
user to a cluster (potentially a cluster of size 1). Let n = |U|, the complexity
of this algorithm is O(n log(n)) for the first step, O(1) for the step 2, O((p +
1) log(p+1)) for the step 3, andO(p2) for the step 4. The total complexity is then
O(n log(n) + p2) which is, in practice,O(n log(n)) since p is a fixed parameter.
In the experiment, p = 5 and α6 = 3. Those parameters have rather small values,
it can be explained by the fact that our community is still small (200 users).

After running this algorithm I store the groups along with their size to reuse
this information during the voting phase.

4.2 Experiments
I now present two different evaluations of SpotRank. The first one is a statis-

tical analysis of the output of the method : distribution of users, votes, pertinence
of both users and spots, ranking, cluster sizes, etc. . .The second evaluation is a
investigation of the human perceived quality of the ranking method.

In order to collect data about the behavior of SpotRank, Guillaume Peyronnet
created a social news website (http://www.spotrank.fr). Spotrank.fr strictly
implements the method presented in this paper and ranks the spots according
to their score (computed as presented in section 4.1). The website has been
launched on July the 9th 2009. The data used for this chapter were collected
the 10/26/2009. During this period, the website received around 15600 visits,
had served around 43000 page views. The bounce rate is 67.85% and the av-
erage time spent by a visitor on the website is 2 :37 minutes. The presence of
spammers is effective, we estimate (by hand) that at least 10 to 15% of the 200



54CHAPITRE 4. MALICIOUS BEHAVIOURS IN SOCIAL NEWS WEBSITES

registered accounts belong to spammers.

4.2.1 Log analysis of spotrank.fr
The log files contain all the information about spots and users and allows to

show accurately the behavior of the method in a real adversarial environment.
The analysis is presented through several figures. The information used for this
experimentation was collected between the 23rd of July 2009 and the 26th of
October 2009. All the results of the experimentation together with their analysis
are presented in the following pages.
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(c) 3/3 - 10/26/09

FIGURE 4.3 – % of users w.r.t. pertinence

Figures 4.3a, 4.3b and 4.3c. These figures show similar data at three different
moments of our analysis. They all represent the percentage of users of SpotRank
that have a given pertinence. For instance the first bar on the left of figure 4.3a
means that around 7% of the users have a pertinence between 0 and 5. As time
goes and the number of users grows the pertinence of the users tends to spread
more. The percentage of users at the right of all graphics represents the new users
that never voted for anything. Even if the distribution of users regarding the per-
tinence seems almost uniform, we can see that most users have a pertinence be-
tween 15 and 50. Thus we define two categories of users, the non-relevant users
whose pertinence is ≤ 10 and the relevant users whose pertinence is ≥ 50 but
don’t include the newcomers. Being in the non-relevant category does not mean a
user votes for spots others don’t like. It means that the user votes often for spots
with low pertinence. It is likely that this category contains mainly spammers.

Spammers have a low pertinence
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FIGURE 4.4 – % of low and high pertinent users w.r.t. time

Figure 4.4. The two curves on this figure show the evolution of the proportion of
users belonging to both the non-relevant and the relevant categories on a period
of 3 months. We can see that the percentage of non-relevant users including
spammers is decreasing while the percentage of relevant users is increasing. This
could be explained by spammers being discouraged but more likely by the arrival
of new relevant users. The increase of the size of the relevant category can also
be explained by the fact that at the launch of the website, spammers propose
spots faster than legitimate users. This means that at first most of the spots have
a low pertinence, inducing a low pertinence for voters.

Spammers’ weight decrease over time
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FIGURE 4.5 – # users versus # proposed spots

Figure 4.5. This histogram presents the number of users that proposed a given
number of spots during the 3 months of the experimentation. It can be seen that
the majority of users proposes a few spots (less than 3). There are few people
with an oddly high number of proposed spots. Top proposers were checked by
hand. Amongst them, the first three (with respectively 591, 440 and 108 spots)
are clearly spammers while the fourth (99 spots) is a borderline user that pro-
poses every single post of his blog.

Spammers propose many spots
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FIGURE 4.6 – % users w.r.t. # votes

Figure 4.6. The figure depicts the number of users w.r.t. the number of votes.
Pay attention to the fact that the Y-scale is logarithmic. I can see that most users
don’t vote a lot : more than 80% of them had voted less than 10 times. The people
that vote the most are clearly the ones suspected to be spammers. If we look
for instance at the outlier with 533 votes, this is without surprise the spammer
spotted on the previous figure. He is a user that proposes a lot of spots and vote
only for his own spots. It does not appear in the figures but there are users that
do not propose spots (or only very few) and that vote a lot.

Spammers use burst voting
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FIGURE 4.7 – spots score w.r.t. time

Figure 4.7. On a social news website such as spotrank.fr there are only a few
slots available for promoting highly popular spots. Is this a problem ? Is the
pressure on spots too high to ensure a fair access to the front page for spots that
deserve it ? This figure gives the answer by showing the behavior of spots’ score
during their first 48h of existence (ie., before they undergo the exemption owed
to the time decay). The max (resp. min) curve gives the score of the most (resp.
least) popular spot at the time the measure is done. The average curve gives the
mean value of scores during the first 48h. We can clearly see that only a few spots
become popular. It is also possible to infer from this figure the average value of
votes for the most popular spot. Indeed, most popular spots received around 15
votes, meaning that the average score of votes for these popular spots is around
25 (to compare to 100, the maximum possible score of a vote, but also to 10, the
threshold beyond which users are not considered relevant anymore).

Few spots reach the front page



60CHAPITRE 4. MALICIOUS BEHAVIOURS IN SOCIAL NEWS WEBSITES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

<5 <10 <15 <20 <25 <30 <35 <40 <45 <50 <55 <60 <65 <70 <75 <80 <85 <90 <95 <100

N
um

be
r o

f v
ot

es

Score

FIGURE 4.8 – # votes versus their scores

Figure 4.8. This last figure shows the number of votes that share a given score.
It is clear that most of the votes (≈1600) have very low score. It is not a surprise
since we already have exhibited a spammer with 533 votes that vote only for
himself and with high frequency, meaning that several of the filters act to pre-
clude the score to be high. Most legitimate users seem to have votes with scores
between 5 and 50, and only a few have very high score.

To summarize, the figures provided in this subsection show clear evidence of
the effectiveness of the method : spammers are detected, and the score of votes
seems to be adapted to avoid manipulations.

Filters reduce spammers’ votes’ value
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4.2.2 Human Evaluation
Even with a very strong analysis of the log files, it is impossible to judge the

filtering quality of the method. Indeed, the algorithm consists in filtering news
w.r.t. the way people vote, it is not content related. To cope with this issue we
decided to gather some feedback from the website visitors. Since an absolute
judgement is impossible to obtain without a long debate on what is the quality of
a website, we choose to compare the top “stories” of three social news website.
The first one is of course spotrank.fr which implements the method presented
in this paper, the other two are two of the three french major competitors in the
field. The interest of the two chosen social news websites is that they use auto-
matic methods to filter news, and also that the human moderation main goal is
to suppress illegal content. The way these two competitors are filtering news is
mostly unknown since those are business websites. It is just known that one of
them is giving more weight to news for which there are a lot of votes in a short
time interval. From now on, they will be denoted as comp1 and comp2. The sur-
vey protocol is the following. To have relevant results we periodically collected
the first five spots on spotrank.fr together with the top 5 of the two major french
social news websites comp1 and comp2. Then disposable Web pages containing
a shuffle of this list of 15 news are automatically generated. Each Web page is
then sent to a volunteer who has to tell for each news if,

Yes, it is relevant for the news to appear on the front page of a social news
website.
No, it is not relevant for the news to appear on the front page of a social news
website.
DnK, he is not able to determine if the news deserve to be on the front page or
not.
Err, The news was not accessible when he tried.

The first five news of each website were collected during a period of 3
months, and 114 persons participated to the poll. I now present the experimental
results.
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FIGURE 4.9 – # answers of each type

Figure 4.9. This figure could be considered as a summary of the results of the
poll. For each competitor it presents the number of Yes, No, Dnk and ERR. The
number of ERR that appears in surveyed people answers is not of interest since
this is an external factor that applies for all three social news websites. However
a higher rate of error could indicate links to unreliable site. Pay attention to the
fact that for each competitor, each surveyed person is giving 15 answers, so the
total number of answers is 1710.

SpotRank received 344 Yes while comp1 and comp2 received respectively
270 and 177 Yes. The performances of comp1 (resp. comp2) are only 78.5%
(resp. 50%) of those of SpotRank, thus surveyed people think that the ranking
given by SpotRank is of higher quality than the two others. Concerning the No
answer the situation is similar : this time the lower is the better since this means
that the top spots are considered not legitimate and SpotRank received 174 No,
while comp1 and comp2 received 237 and 247 such answers. Last, 44 DnK
were received by SpotRank. This is again a better achievement than comp1 and
comp2 and this means that the filtering of SpotRank gives clearer results (only a
few borderline spots).

SpotRank outperforms its competitors
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FIGURE 4.10 – rank w.r.t. the number of Yes

Figure 4.10. In the previous figure, the behaviors of all users were merged in the
counting of each type of answer while here we consider the opinion of each sur-
veyed person. A social news website is considered first if the number of Yes he
received from a peculiar answerer is greater than those received by the two other
competitors. It is second (resp. third) in the case where it received the second
(resp. third) number of Yes. SpotRank is in first position two times (resp. four
times) more than comp1 (resp. comp2), showing again its higher performances.
It is naturally second and third less often than the others.

SpotRank’s has more legitimate news
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Figures 4.11a and 4.11b. These figures are similar to the one mentioned be-
fore for the No and DnK answers. These two figures confirm what have been
presented previously.

To summarize, this user satisfaction survey show clearly that the filtering of
SpotRank is perceived to be of high quality. It is interesting to note that some
early adopted spammers have already given up playing with SpotRank (see pre-
vious subsection).

Spammers can not reach the top 5
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4.3 Discussion
This section discuss the interest of the approach made in this paper since

statistical filters are an ad hoc response to the spammers problems on social
sites. The idea was to prevent identified attacks of spammers on such sites.

Arrow impossibility theorem [3] stated that it is impossible to build a vot-
ing scheme with the concurrent fairness properties : unanimity, non-imposition,
universality, monotonicity, independence of irrelevant alternatives and non dic-
tatorship (no user can force his ranking to be the global ranking). The last one
is exactly what spammers are trying to achieve so it is very important to make
their task as hard as possible.

Obviously we will never be able to stop a spammer with infinite resources. In
this case he will be able to pay a sufficient amount of different people to produce
and vote for his content.

Our method, with the parameters set to their actual value, works fine on a
small community as the results presented in this chapter confirm it. The param-
eters values should be adapted to the size of the community. If one spammer
where to find a breach in the set of exposed filters and successfully promotes
spam content to the front page, we will have to identify how he proceeds and
then create the appropriate filter to void the effects of his manipulation of the
system. The method is therefore easily adaptable to any new attack we can en-
counter.

4.4 Conclusion
In this chapter was presented a robust voting system for social news websites

whose goal is to demote the effects of manipulations. Through a website that im-
plements this algorithm, evidence of the efficiency of the approach was shown,
both from a statistical and human point of view. SpotRank clearly outperforms
real competitors in a real life Web ecosystem, proving the interest of the key
notions used to design the method : pertinence, frequency filtering and collusion
detection.
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DEMOTING WEBSPAM

This chapter proposes an approach to demote the effects of Webspam through
the use of clustering. As explained in chapter 3, graph clustering regroups nodes
that are densely connected with few connections between groups. My working
hypothesis is that using a clustered version of the Web graph is useful to demote
cheaters. This idea to use clustering to fight Webspam is motivated by several
facts,

– Spam farms are densely connected regions on the Web and make only few
connections to the outside world. Indeed spammers make the PageRank
circulates inside their structures to make it grow but are not ready to give
it away to a page that does not belong to them. They can be seen as already
clustered regions of the Web.

– Pages with a genuinely high pagerank must get incoming links from many
places over the Web. There are no reasons for those pages to be densely
connected with all their contributors.

Thus if we compute a PageRank where the contributors of node j are nodes i
with i→ j and cluster(i) 6= cluster(j), it should demote the pagerank of cheaters
way more than pagerank obtained in a honest manner.

The first part of this chapter introduces the techniques we propose in order
to regroup nodes into clusters in a fast and local manner. Then I present the
experiments that validate my working hypothesis. Finally some statistical evi-
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(a) First Clustering technique
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(b) Second Clustering tech-
nique

S

(c) Third Clustering technique

FIGURE 5.1 – Lightweight clustering techniques

dence is given about the good behavior and the efficiency of one the techniques
introduced.

5.1 Clustering Methods
In this section I present the three graph clustering techniques used in our

experiments. First, it is important to notice that classical and efficient cluster-
ing methods for small graphs such as the Markov Cluster Algorithm (MCL, see
3.6.2) and the edge betweenness clustering method (EBC, see 3.6.1) are unsuit-
able for the Web graph because of its size. Indeed MCL requires an explicit
matrix representation of the graph which is totally infeasible in our case and
EBC runs in time and space of O(nm) where n is the number of nodes in the
graph and m the number of edges (these notations will be kept throughout the
chapter), which is in practice totally non-tractable. Moreover we are not inter-
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ested in an exact clustering. Our interest is not the detection of Webspam but its
demotion. If we can group enough Webspam with the target page, building big
enough communities, we hope to stop a sufficient amount of incoming pagerank
to nullify the Webspam’s effects.

Google has indexed more than 1000 billion pages 1. So in order to be tractable,
every technique must have a low complexity, i.e. linear at maximum. Indeed
PageRank has a linear complexity O(n + m). Since the PageRank must be cal-
culated to offer a ranking to users, every method which purpose is to demote
the effects of Webspam must add at most a constant amount of calculation to be
effective. The ideal case would be a method that could be embedded with the
PageRank computation with only a constant overhead and no memory usage.

All three methods presented below are local algorithms computed for every
node in the graph. The idea is always to have a very simple criterion to group
nodes together, starting from a peculiar node. It is also important to use only
local knowledge to compute the clusters.

The first technique can be embedded for free during the computation of
PageRank. Figure 5.1 shows examples of how nodes are regrouped for each
method. The red node labelled S is the starting point of the algorithm and the
blue nodes are the ones regrouped with it after the computation.

The first method proposed is very intuitive. It simply regroups nodes with
one outgoing link with the target of this link (see figure 5.1a). This means that
people that give all their pagerank to one person are regrouped with this person.
Indeed a well-known technique to raise the pagerank of one page is to create a
lot of dummy pages that will give all their pagerank to the target page. This first
method will be referred to as Tech1 in the following.

In the second technique, the objective is to regroup nodes that belong to short
loops in the graph. In figure 5.1b the length of the loop is 4. For every node in
the graph we compute every path of length k and if the path ends on the starting
node then everybody in the loop goes into the same cluster. Spammers don’t like
to waste pagerank, thus many links coming out the target page should return to
the target page in a few steps. In the experiments the length of loops was set to
k = 3. This value was chosen for a tractability motive. It will prove the intuition
useful while staying fastly computable. In the rest of this chapter this method
will be called Tech2.

The last method simply launches r random walks of length l from every
node in the graph. If the number of random walks that end on a particular node

1. http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
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is higher than a threshold t then this node and the starting node are regrouped
in the same cluster. With this approach we hope to regroup Webspam with their
target page even if some links may lead elsewhere to avoid automatic detection
of well known structures. Following links from a Webspam page will lead to
the target page with high probability. Later in the chapter this technique will be
referred to as Tech3. During our experiments 200 random walks of length 15
were launched. The threshold was fixed at 40 meaning that more than 1/5 of the
walks must end on the same node for it to be regrouped with the starting node.

More formally at the beginning of each algorithm every node belongs to its
own cluster. When nodes are regrouped we simply merge their clusters following
the expression “Any friend of yours is a friend of mine”. This has no impact if
the starting point of the algorithm has no neighbors in the cluster of the node it
wants to regroup with but, on the other hand if it wants to regroup with someone
who is very close to one of its successors the starting node probably wants to
associate itself with that particular neighbor. Thus two nodes can end up in the
same cluster even if the method did not explicitly regroup them.

5.2 Experiments

Webgraph
spam nonspam undecided

‰ ‰ ‰
PageRank 84 015 567.786 6.16 50.35 2
Tech1 68 943 484.072 6.13 50.03 2.05
Tech2 48 431 264.361 6.09 47.97 2.01
Tech3 75 176 329.382 6.14 50.67 2

TABLE 5.1 – Pageranks of each set

In this section are presented experiments that have been conducted on the
dataset WEBSPAM-UK2007 2. This dataset is a crawl of the .uk domain made
in May 2007. It is composed of 105 896 555 nodes. These nodes belong to 114
529 hosts and 6 478 of these hosts have been tagged. Please pay attention to

2. Yahoo ! Research : ”Web Spam Collections”.
http ://barcelona.research.yahoo.net/webspam/datasets/ Crawled by the Laboratory of Web Al-
gorithmics, University of Milan, http ://law.dsi.unimi.it/. URLs retrieved 05 2007.
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Total Intersection
Nombre Score Nombre Score Percentage

PageRank 56 104 580 46 89 726 100
Tech1 66 85 451.5 46 74 794.4 83.36
PageRank 56 104 580 36 87 877.8 100
Tech2 49 59 648.9 36 42 502.1 48.37
PageRank 56 104 580 52 99 496 100
Tech3 65 92 937.9 52 84 089.2 84.52

(a) Top 20%

Total Intersection
Nombre Score Nombre Score Percentage

PageRank 186 155 798 147 128 351 100
Tech1 210 127 193 147 111 833 87.13
PageRank 186 155 798 142 136 765 100
Tech2 203 88 731 142 63 700.1 46.58
PageRank 186 155 798 161 143 803 100
Tech3 189 138 824 161 128 264 89.19

(b) Top 30%

TABLE 5.2 – Effects of differents tests on spam tagged pages

the fact that hosts are tagged, not pages (i.e. entire domains instead of indistinct
pages). We use the Webgraph [12] version of the dataset by Boldi and Vigna
since it allows to manipulate huge graphs without using a lot of memory.

The tagged hostnames are separated into 3 user-evaluated categories : spam
(690 972 pages), nonspam (5 314 671 pages) and undecided (201 205 pages).
Using this information we can construct 3 sets of Web pages corresponding to
the 3 categories.

We first evaluate the pagerank of each node of our dataset. Then we sort each
set spam , nonspam and undecided in decreasing pagerank value.

Then we apply each technique to the graph before computing a modified
version of the PageRank where i contributes to the pagerank of j iff

– i→ j
– i and j are in separate clusters
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Total Intersection
Nombre Score Nombre Score Percentage

PageRank 958 846 644 799 699 145 100
Tech1 1 049 690 274 799 596 293 85.29
PageRank 958 846 644 312 389 323 100
Tech2 538 465 120 312 331 698 85.2
PageRank 958 846 644 763 714 624 100
Tech3 830 762 651 763 728 457 101.94

(a) Top 20%

Total Intersection
Nombre Score Nombre Score Percentage

PageRank 2 433 1 269 460 1 901 1 062 620 100
Tech1 2 776 1 035 060 1 901 892 642 84
Pagerank 2 433 1 269 460 1 030 745 638 100
Tech2 1 605 697 270 1 030 547 989 73.49
PageRank 2 433 1 269 460 2 028 1 087 260 100
Tech3 2 166 1 142 930 2 028 1 102 770 101.43

(b) Top 30%

TABLE 5.3 – Effects of differents tests on nonspam tagged pages

The contribution Cij of i to j is the following :

Cij =
Pr(i)

ki
where ki = |{j|i→ j, cl(i) 6= cl(j)}|

This is the same as running the PageRank on a graph where all intra clusters
edges have been removed. Results can be found in table 5.1. We do not use the
normalized version of the PageRank where they all add up to 1 since we make
the computation over a huge graph and don’t want to be limited by the machine
precision. All per thousand in table 5.1 don’t add up to one since we consider
only a fraction (∼ 5.86%) of all pages (the tagged web pages). It can be seen
in this table that every method make the pagerank of all three sets drop. This
is easily understandable. Since many edges are removed from the graph, the
pagerank cannot spread as easily.

Tech1 reduces the whole pagerank of the graph by ∼ 18%, Tech2 reduces it
by almost 43% and Tech3 by ∼ 10%. We can see that proportions of each set
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Total Intersection
Nombre Score Nombre Score Percentage

PageRank 49 34 156.5 42 29 705.4 100
Tech1 48 28 748.5 42 26 154.3 88.05
PageRank 49 34 156.5 16 13 851.7 100
Tech2 23 19 875.7 16 14 271.6 103.03
PageRank 49 34 156.5 38 27 011.7 100
Tech3 45 30 774.8 38 26 741.8 99

(a) Top 20%

Total Intersection
Nombre Score Nombre Score Percentage

PageRank 109 50 569.9 96 45 923.6 100
Tech1 118 42 566.2 96 39 577.6 86.18
PageRank 109 50 569.9 49 31 952.9 100
Tech2 66 29 427.1 49 25 522.6 79.88
PageRank 109 50 569.9 85 41 865.5 100
Tech3 111 45 230.8 85 41 002 97.94

(b) Top 30%

TABLE 5.4 – Effects of differents tests on undecided tagged pages

is mostly respected using whatever technique. Tech2 is the only one to reduce
some set’s pagerank. Since it is the nonspam set (reduced by more than 2‰)
this is not a good news. Tech3 slightly increases the nonspam pagerank while
slightly decreasing the spam pagerank. Obviously this table does not provide
enough information to take some conclusions.

Let’s take a closer look on the results. We focus on nodes with a proportion-
ately high pagerank (nodes well ranked). We will concentrate the analysis on
the first 20% (resp. 30%) of each set, meaning nodes representing 20% (resp.
30%) of the set pagerank. Tables 5.2, 5.3 and 5.4 represent for each technique
the number of nodes and score for the whole 20 (resp 30) top percent of each
set and the number of nodes and score for the intersection with the 20 (resp 30)
top percent of the pagerank of the set. It is important to ensure that the demotion
observed at the whole graph level is not uniformly distributed amongst all nodes.

Table 5.2 presents the results for the spam set. Regarding the top 20% of this
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set we can see that for Tech1 and Tech3 there are more nodes in this top 20 than
for the PageRank meaning that each node is weaker. There are fewer nodes for
the Tech2.

Looking at the intersection of each set we can observe that Tech1 demotes the
intersection’s pagerank by less than 17% which is less than the general demotion
registered for this method. Tech2 demotes the pagerank by more than 51% which
is better than the general reduction meaning that this spam is actually demoted.
Tech3 performs a demotion of almost 15.5% on the intersection which is also
better than the general demotion on the whole graph.

On the top 30% of the spam set, Tech2 improves its results up to a 53%
demotion more than 10 points above the average demotion. Tech1 results worsen
to almost 13% and Tech3’s efficiency falls to the average demotion.

Now let us focus on the intersections for the 30 top percent. It is interesting
for us to have big enough intersection in this case to be sure that strong demoted
spam nodes are not replaced by stronger promoted spam nodes. The size of all
intersections combined with the fraction of the set’s pagerank they represent
allow us to be sure that it is the case.

We can see in this table that only two methods (Tech2 and Tech3) succeed in
spam demotion. Tech1 has a trend at promoting important spam pages.

Table 5.3 shows the results for the nonspam set. It is important here to con-
firm the good results obtained by both Tech2 and Tech3.

Let’s first study the results of Tech1. We observe that it has more pages in
both top 20 and top 30 percent of the nonspam set. This shows that those pages
are weaker and hence demoted. For the top 20% (resp. 30%), Tech1 demotes the
intersection by 14.7% (resp. 16%) which represents a small promotion compared
to the general demotion. The score on the top 30% is actually worse than the one
for the top 30% of spam pages.

Tech2 has the smallest number of pages composing the top 20 and 30 percent
of the nonspam set. This means that the pages are stronger after the application
of this method than before. Tech2 demotes the intersection of the top 20% (resp.
30%) by 14.8% (resp. 26.5%) which is way less than the average demotion on
the whole graph. This means that these nonspam pages are promoted compared
to the rest of the graph.

Tech3 also has a smaller number of pages than the PageRank in its top 20 and
30 percent for the nonspam set ensuring that those pages have a higher pagerank
on average. On this particular set, Tech3 realises negatives demotions ie promo-
tions of respectively almost 2% for the top 20% and ∼ 1, 43% for the top 30%.



5.2. EXPERIMENTS 75

These of course are better results than those observed on the whole graph since
albeit the general graph lost some pagerank, those particular pages gained some.

Looking at the intersections we can see that Tech1 and Tech3 have large
enough intersections but that Tech2 has a smaller one compared to its intersec-
tion on the spam set. This is of less harm here since we are less concerned about
the promotion of nonspam nodes but we would like to keep the same sorting as
the PageRank as much as possible. The size of this intersection can be explained
by the fact that at the top level the fraction of pagerank represented by the non-
spam set after Tech2 has been applied is smaller than the one of the PageRank,
meaning that some important nodes have been demoted since the number of
nodes is the same. We are allowed to think then that the ranking of Tech2 may
preserve an important part of the PageRank ranking on the nonspam set.

Tech3 outperforms Tech2 on this table but it was the contrary on the spam
table. It is of interest to see how they can be ranked and if the undecided set can
be helpful to do that.

Table 5.4 concerns the undecided set. This set is the smallest and the one
that contains the least relevant information since pages contained in this set were
not clearly identified as either spam or nonspam pages.

Our first method continues to produce the same effect previously seen on the
first two sets. Meaning the demotion observed on the top 20% (resp. 30%) is ∼
12% (resp. 13.8%), being inferior to the average demotion. We can then conclude
that this technique slightly increase the pagerank of already high ranked nodes
and demotes poorly ranked nodes.

Tech2 promotes the top 20% intersection of the undecided set by more than
3% but if we consider the top 30% there actually is a demotion of 20% which is
less than the average observed on the whole graph.

Tech3 practically does not touch to the pagerank of undecided nodes. The
registered demotions for the top 20 and 30 percent are respectively of 1% and
2%. These results are again way above the average results of this method.

The results obtained by Tech2 and Tech3 could be explained by the fact
that these sites are borderline. it means that some may be spam while other are
nonspam nodes. Thus, some nodes use the techniques tracked by our methods
while others don’t. This is clearly visible for Tech2 where we have a promotion
on the top 20% but a demotion on the top 30%. Moreover we can see that the
number of pages almost triple between the top 20 and 30 percent meaning that
there is a gap in pagerank.

Analysing the effects of our three approaches on the spam , nonspam and
undecided sets made us realise that Tech1 is not helpful but that Tech2 and Tech3
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Dem. Prom. Total
nonspam 458 572 1030
spam 98 44 142
Total 556 616 1172

(a) Observed values

Dem. Prom. Total
nonspam 488.63 541.37 1030
spam 67.37 74.63 142
Total 556 616 1172

(b) Expected values

TABLE 5.5 – Tech2

Dem. Prom. Total
nonspam 86 1942 2028
spam 7 154 161
Total 93 2096 2189

(a) Observed values

Dem. Prom. Total
nonspam 86.16 1941.84 2028
spam 6.84 154.16 161
Total 93 2096 2189

(b) Expected values

TABLE 5.6 – Tech3

Dem. Prom. Total
nonspam 1.92 1.73 3.65
spam 13.93 12.57 26.51
Total 15.85 14.31 30.16

(a) Tech2

Dem. Prom. Total
nonspam 0 0 0
spam 0 0 0
Total 0 0 0

(b) Tech3

TABLE 5.7 – χ2 values

succeeded in demoting the effects of Webspam while promoting honest pages.
Tech2 outperforms Tech3 concerning the demotion of Webspam and vice versa
regarding nonspam promotion. In the next section we will use statistical tools to
check whether these techniques are significantly efficient.

5.3 Statistical Test
In this section, we are looking for statistical evidence of the efficiency of

our methods to ensure that they are working heuristics. We saw that Tech2 and
Tech3 have different effects on pages based on their set of origin. We want to
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make sure that it is not just a huge coincidence but that it is in fact our methods
that effectively help to separate web pages. We will use a χ2 independence test
to verify that fact.

Here we are only interested in pages with high pagerank before and after the
computation of one of our method on the graph. We want to see how these pages
are treated by Tech2 and Tech3. We make two categories, pages that are demoted
(meaning their particular demotion is greater than the average one) and pages
that are promoted (their particular demotion is either negative or less or equal to
the average one). Since we are only interested in pages with high pageranks, our
sample for each set will be the top 30%.

The hypothesis H0 we want to test is that both spam and nonspam pages
share the same distribution.

The values Vij for each set and each category can be found in table 5.5a for
Tech2 and table 5.6a for Tech3. All categories fill the minimum requirements
for the χ2 test. Table 5.5b and 5.6b show the expected values calculated with the
following formula :

Eij =
Si∗ ∗ S∗j
S∗∗

where Si∗ is the sum of the ith line S∗j the sum of the jth column and S∗∗ the
sum over the lines and columns.

Finally the χ2 value for both tests can be found in table 5.7a and table 5.7b
respectively. Since this χ2 test is made over 2 categories and 2 sets of values,
the critical value to exceed is 3.84 if we want to reject the hypothesis H0 with a
probability of error of 5%. The χ2 value is calculated according to the following
formula :

χ2 =
∑
i,j

χ2
ij where χ2

ij =
(Vij − Eij)2

Eij

The χ2 value obtained for Tech2 is 30.16 meaning that we can reject the
hypothesis H0 with at most 0.5% chances of being wrong. Thus it can be stated
that spam and nonspam pages do not share the same distribution in this case i.e
Tech2 effectively separates spam pages from nonspam ones.

The score for Tech3 leaves no doubt, 0 meaning that the two samples share
the same distribution. As well as it seems to work in practice, there is no statis-
tical evidence that Tech3 may be able to tell the difference between spam pages
and nonspam ones.
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We were only able to show statistical evidence for the good behaviour of one
of our technique, leaving us with Tech3 just as an heuristic that seems to work.

5.4 Conclusion
In this chapter we have presented different clustering methods for the demo-

tion of the effects of Webspam on the PageRank algorithm. All three approxi-
mate methods are fast to compute and need only a small amount of memory. The
last two techniques, based respectively on the identification of small circuits in
the graph and random walks, are shown to have good results on Webspam de-
motion. Moreover, for the method Tech2, we have statistical evidence that it can
separate spam and nonspam nodes. The complexity of this method isO(n+m).
Thus this fully automatic method could be effectively added to the already ex-
isting arsenal for the Webspam detection and demotion of a search engine. It is
still of interest to investigate other methods to perform approximate clustering
on the Web graph.
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DETECTING WEBSPAM

In the previous chapter, we presented a methodology to automatically de-
mote Webspam using lightweight clustering methods. But it is also of interest
to clearly identify people benefiting from Webspam. This is a computationally
different problem, the objective is not to compute a fairer ranking of pages but
to spot people that do not deserve their rank.

In this chapter we present a method whose goal is to identify malicious struc-
tures amongst Web pages. The intuition behind this method is that spammers use
specific inter pages architecture to route the PageRank around the target page
in order to maximise its score while avoiding automatic detection. Since the
PageRank is related to the behaviour of a random surfer, it seems that using ran-
dom walks to reproduce the behaviour of this random surfer it will be possible
to expose paths created by spammers in order to manipulate and increase their
pagerank.

The main results of this chapter are :
– A method based on strong statistical results (borrowed from [31]) that

allows the identification of malicious patterns in the random walks.
– A methodology that classifies random walks in similar categories in order

to identify spammers and pages benefiting from their manipulations.
– Strong experimental results showing the efficiency of this approach.
This chapter is organised as follow : section 6.1 introduces the method to

79
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identify pages benefiting from Webspam. In section 6.2, I detail the experiments
verifying the validity of this approach and show the results before concluding in
section 6.3.

6.1 Random walks against Webspam
In this section I describe our method, which is designed to detect Webspam-

mers beneficiaries : target pages. It is based on random walks launched from sus-
pected nodes in the graph. We then analyse how the PageRank is driven through
the neighbourhood of those suspected nodes. Since the Web graph is very large,
it is of the utmost importance to develop lightweight techniques to detect or de-
mote Webspam. Random walks seems a natural choice for that purpose since
they only induce a constant additional cost. Indeed, the crawler of the search
engine must already cover the Web graph. The intuition behind the method pre-
sented in this chapter is that spammers use specific inter pages architectures to
route the PageRank around the target page in order to maximise its score while
avoiding automatic detection.

PageRank (see the seminal paper of Page et al. [80]) simulates the behaviour
of a random surfer. This random surfer has two possible choices when visiting a
page. He can either follow a link chosen uniformly at random on the page or he
can teleport himself to another page on the graph. Spammers can not influence
the teleportation but they can drive the random surfer around so he will come
back quickly. Since the PageRank of a given Web page is basically the probabil-
ity of being on that Web page at any moment of a random walk, this procedure
will boost the pagerank of this given page. Thus using random walks to repro-
duce the behaviour of the random surfer we will be able to expose specific paths
created by spammers in order to manipulate the random surfer and increase their
target page’s pagerank.

We want to identify patterns in the random walks. We need now to define the
patterns we will look for and use a confirmed methodology to classify random
walks in similar categories in order to identify spammers and pages benefiting
from spam.

During the random walks we need to store information that can be used at a
global level to identify patterns. Using nodes’ id won’t be sufficient because we
won’t be able to draw patterns from such specific information. We need less per-
sonal information about nodes while exploring the graph. We chose to associate
nodes with their distance from the starting node of the random walk. We limit
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the distance to a constant d meaning that all nodes which distance disti to the
starting node i is such that disti > d then disti = d + 1. This neighbourhood is
called the d-neighbourhood of the node i. Thus if we consider the neighbourhood
of distance at most d the language has d + 2 symbols [0 · · · d + 1]. This step is
illustrated in Fig. 6.1a. Using distances instead of nodes’ id will make it possible
to draw pattern and regroup nodes with similar random walk. It will also help to
recognize structures independently from their size. If structures serve the same
objective they will have similar walks even if the sizes differ.

The information we are interested in during the random walks is how the
PageRank is driven through the different levels of the neighbourhood. Thus we
focus on the n-grams in the random walks. We then use the so-called ustatk
vectors [31] on the random walks.

For a wordw over the alphabetA it is possible to compute the vector ustatk(w)
which is a vector of size |A|k and defined as,

∀p ∈ [0 . . . |A|k − 1], ustatk(w)[p] =
occp(w)

|w| − k + 1

where occp(w) represents the number of appearances of the k-gram p in w and
|w| − k + 1 the number of blocks of size k in the word w. ustatk(w)[p] is thus
the frequency of p as a k-gram of w (more details about the theory behind the
ustatk vectors can be found in [31]).

Using all these tools, we will now be able to identify similar structures, i.e.
structures that produce mostly similar words. If two architectures produce simi-
lar words, it means that the PageRank is driven the same way around the target
page (source of the random walk). If we can identify how a spammer routes the
PageRank in his neighbourhood we will be able to compare its ustatk with the
ones computed on suspicious nodes. The key point that makes the use of ustatk
vectors highly effective for this goal is that they are robust, as the following result
from [31] states. This proposition deals with the relation between L1 distance,
distance over words and ustatk vectors.

Proposition 1 For large enough words w,w′ ∈ Σ∗,∀δ > 0, for large enough
k :

– if dist(w,w′) ≤ δ2, then ||ustatk(w)− ustatk(w′)||1 ≤ 7 · δ.
– if ||ustatk(w)− ustatk(w′)||1 ≤ δ then dist(w,w′) ≤ 7 · δ.

Thus if two ustatk vectors over w and w′ are close (in the L1 sense) then w
and w′ are very similar.
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FIGURE 6.1 – Graphic description of our method
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Our Algorithm : Input G the graph.
Input i the starting node.
Param d the neighbourhood distance.
Param l the length of the random walk.
Param k the size of the k-grams considered.

1. Compute the neighbourhood of distance d.

2. Launch a random walk of length l.

3. Compute the Ustatk vector associated with the random walk.

4. Compare the vector with the library.

FIGURE 6.2 – Algorithm

Fig. 6.2 presents the algorithm derived from the previous proposition. This
algorithm is used to match structures crawled amongst the Web graph against a
library of previously known spam structures. It is correct thanks to the proposi-
tion 1. Fig 6.1 shows the execution of the algorithm on a very small graph shown
on the left of Fig. 6.1a. First in Fig. 6.1a, every node is labelled with its respec-
tive distance to the node 1 starting point of the random walk. Then we launch a
random walk of size 16 resumed in Fig. 6.1b. The statistical projection of this
random walk can be seen in Fig. 6.1c. The comparison with the pattern library
will occur on the ustatk vector.

Let’s now look at the complexity of the algorithm. The first step is the com-
putation of the neighbourhood of distance d for a node i and costs Ci which is
defined as

Ci = 1 +
∑

0≤k<d

∑
i→kj

d+i

where i →k j means there exist a shortest path of length k between i and j and
d+i is the outdegree of node i. The worst case complexity scenario happens when
a node i is able to reach all the nodes within its neighbourhood of distance d
inducing a worst case complexity of Ci = O(n+m).

Summing this complexity for all nodes gives a running time

C =
∑
i∈V

Ci = O(n2 + nm)
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The complexity of launching a random walk of length l is constant for a
given node since it consists of l − 1 random choices. Random walks should
be launched for all suspected nodes. Without previous knowledge on suspected
nodes, it means it should be launched on all nodes with high pagerank or at most
for every node in the graph. Thus this step requires O(n) steps.

The computation of the ustatk vector for a random walk of length l requires
also l steps since it requires to scan the whole random walk. Then this step takes
O(n) operations to compute the vectors for all nodes.

The complexity of this algorithm is the complexity of its first step meaning
that it can run in time O(n2 + nm). This implies that it is impossible to run the
algorithm on the whole graph and that one should first select the node he wants
to inspect, nodes in a certain range of pagerank for example.

6.2 Experiment
As in chapter 5, the experiments have been conducted on the dataset WEBSPAM-

UK2007 1. This dataset is a crawl of the .uk domain made in May 2007. It is
composed of 105 896 555 nodes. These nodes belong to 114 529 hosts and 6
478 of these hosts have been tagged. Please pay attention to the fact that hosts
are tagged, not pages (i.e. entire domains instead of indistinct pages). We use
the Webgraph [12] version of the dataset by Boldi and Vigna since it allows to
manipulate huge graphs without using a lot of memory.

The hostnames are tagged with three different labels spam, nonspam and
undecided. We are not interested in the last one since it does not provide dis-
criminant enough information. In addition to those two sets we add a third set
which we called spam linked since it is composed of nodes that are not in the
spam set, but whose distance to nodes in the spam set is at most 2. Originally
the spam linked set had 309 508 nodes but we remove from this set all the nodes
that are also in the nonspam set. The intersection of those two sets contains 11
814 nodes. This is quite important and someone must keep in mind that they are
probably many other suspicious nodes in the nonspam set. The final size of the
spam linked set is then 297 694 nodes.

We then run a PageRank computation on the whole graph. We used the non-
normalized version of the algorithm because of computer precision issues and

1. Yahoo ! Research : ”Web Spam Collections”.
http ://barcelona.research.yahoo.net/webspam/datasets/ Crawled by the Laboratory of Web Al-
gorithmics, University of Milan, http ://law.dsi.unimi.it/. URLs retrieved 05 2007.
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Nodes PageRank
Value Percentage Value Percentage

Graph 105 896 555 100 84 015 567 100
Spam 690 972 0.65 517 546 0.62
Spam Linked 297 694 0.28 7 733 663 9.21
Nonspam 5 314 671 5.02 4 230 292 5.04

TABLE 6.1 – Number of nodes and pagerank part for all three sets

run 60 iterations. The results are shown in table 6.1. We can see in this table that,
despite its few nodes, the spam linked set has an oddly high pagerank. This is
surely explained by how this set was created. Many nodes have a huge part of
their incoming links coming from the spam set. Thus it is surely in this set that we
can find pages benefiting from Webspam. The latter probably more represented
in the spam set. Indeed, this is a standard behavior for spammers to link from
highly “spammy” Web pages their specific targeted (but clean) page.

The next step of these experiments was to launch random walks from every
node belonging to one of the three tagged sets. More precisely we launched
one random walk for every node and every set of parameters. Indeed we tried
neighbourhood of distances 2 and 3 and looked at ustatk vectors for bi- and
tri-grams. The presented results are those obtained with a 3-neighbourhood and
computing ustat2 vectors. The size of the vectors is then 25.

First we want to look over each set for general statistics. More precisely, we
are interested in knowing the proportion of sinks (nodes without outlinks) in
each set as well as the number of random walks that lead to pagerank evasion
i.e. the number of random walks that go to the d + 1 (here 4) level more often
than they come back. The results are shown in both tables 6.2a and 6.2b. We can
see that the set that minimizes both criteria is the spam linked set. Indeed sinks
are clearly obstacles to a good circulation for the PageRank and evasions are not
recommended if you want to maximise your pagerank. Note that those evasions
may not all be real evasions since there are no differences between levels after 3.

In addition we look at random walks that come back to their origin at some
point. People want to maximize their pagerank so they articulate the architecture
around their target page to lure the random surfer. It is clear from results in
table 6.2c that most cheaters are in the spam linked set. Pages in the spam set
are pagerank accumulators and aggregators but the spammers objective is not to
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Number %
Spam 116 401 16.85
Spam Linked 16 497 5.54
Nonspam 609 307 11.46

(a) Sinks in each set.

Number %
Spam 117 579 17.02
Spam Linked 47 654 16. 01
Nonspam 1 005 904 18.93

(b) Evasions in each set.

Number %
Spam 8 406 1.22
Spam Linked 88 069 29.58
Nonspam 132 931 2.50

(c) Returns to the origin.

TABLE 6.2 – General statistics.

maximize the pagerank of those pages, since as said before the target page of
webspammers is often a genuine page.

The presented technique proceeds by comparing the frequency vectors com-
puted to already known ones. Thus, we need a pattern library to compare the
vectors to. Since the objective is to identify cheating structures, it is important to
search for these patterns in the good set. We chose to extract the patterns we will
look for in the spam linked set since it is supposed to contains people benefiting
from spam.

As said previously, spammers needs to make the pagerank circulate but must
ensure that this pagerank will come back really often. We then chose to extract
all ustat2 vectors, from the 100 nodes with the highest pagerank in the spam
linked set, that present a high enough frequency of the pattern 01 meaning that
the random walk came back to its starting point. We selected random walks that
came back at least 5 times to their starting point.

This leads to fourteen patterns we will attempt to identify in all three sets.
We consider that a vector v matches a pattern p whenever |v − p|1 ≤ 0.2. Note
that the maximal distance between two vectors is 2.

The results of these matches can be seen in table 6.3. We can see in this table
that there are very few matches for the spam set. This again provides evidence
that nodes in this particular set are not here to benefit from Webspam, but are
indeed Webspam and aim at producing artificial PageRank for nodes in the spam
linked set.



6.2. EXPERIMENT 87

Number of matches
PageRank

Sum Highest Lowest
Spam 43 97.6 13.87 0.47
Spam Linked 2460 107 372.51 8704.22 0.48
Nonspam 1069 7002.65 517.55 0.36

TABLE 6.3 – Results of comparisons

Regarding the nonspam set. It has quite a few matches. It is reasonable to
think that those matches are in fact cheaters since the intersection between the
nonspam and the spam linked set is not null. We can see that around 12% of
those matches are in fact in the intersection.

It is in the spam linked set that we find the most matches that are really
efficient. With only 2.3 times more matches than the nonspam set, the sum of
the pagerank of the matched nodes is more than 15 times bigger.

It is interesting to note that pages whose random walks have a high number
of returns to the origin mostly have a high pagerank. Since we can not mas-
sively find this pattern in the nonspam set, it can not be considered as a normal
behaviour. This means that owners of these pages uses some kind of specific
architectures in order to make the PageRank circulates around the page while
maximizing the PageRank of the page itself.

Looking at the patterns extracted, it is possible to divide them in 2 categories
presented in Fig 6.3. Of course those patterns are subjected to slight changes,
losing a bit of effectiveness but becoming really harder to identify.

In the first pattern (Fig 6.3a), we observe that the PageRank circulates a lot
between the neighbors of the target page that exchanges a lot with its neighbors.
This pattern may seem natural for a site but since it is rarely identified in the
nonspam set, it is clear that only Webspammers set up this particular architecture
to maximize their score.

The second pattern shown in Fig 6.3b creates short loops to bring the PageR-
ank back to the target page. The PageRank is driven 2 steps away from the target
page before coming back directly. This structure is rather usual in search engine
optimization (SEO) since it is widely known by spammers that reciprocal link-
ing is detected (and penalized) by the search engines, and so triangular linking
is then set up to avoid detection.

Based on those promising results, it would be interesting to investigate fur-
ther the effective patterns we can find in those ustatk vector. It is possible to find
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FIGURE 6.3 – Patterns extracted from spam linked top100

people benefiting directly from Webspam but spammers are getting smarter and
their techniques more complicated every day. It could be also of interest to con-
sider “middle men” in the Webspamming world to separate real cheaters from
their pagerank providers. Those “middle men” are nodes taking part in smaller
structures that boost their pagerank but not too much, then those pages can link
directly to the real target page that does not have to make reciprocal links and
can avoid detection since it does not appear in a special architecture. The detec-
tion of those “middle men” is a lesser evil for spammers since it does not expose
the real target page.

To understand in more depth the mechanisms built by spammers, ustatk vec-
tors for k > 2 should be analysed with more precision. Since they give more
details about the spammers’ strategy for PageRank redirection. They would also
give a better mechanism for pattern comparison in terms of precision.

6.3 Conclusion
In this chapter, I presented a technique whose goal is to detect web pages that

benefit from Webspam. This technique is built up strong theoretical foundations
through the use of the ustatk vectors of [31]. Experimental results show that this
technique is both effective and efficient since we are able to detect cheaters using
a few simple patterns. Moreover, this method is robust towards slight changes in
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the spam farms since it looks for small distances between ustatk vectors. This
means that with a well constructed pattern library it should be possible to catch
a lot of cheaters.

However, this technique may not be applied on the whole graph since the
neighbourhood computation step may cost too much on graphs with high outde-
gree nodes. One should select first suspected nodes on several criteria : PageR-
ank range, biased neighbors distribution, etc. Once the set of starting points is
selected the method can be applied to detect efficiently the cheaters amongst the
suspected pages.
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INTRODUCTION

In this part of the thesis, I focus on large-scale networks. The networks I am
interested in are well-structured networks whose sizes tend to increase. Sensor
networks or distributed applications usually work fine when the number of enti-
ties is limited (i.e. small). The problem here is to design algorithms that scale-up
to hundreds of thousands of entities and beyond. It is also of interest to possess
tools to analyse in depth such systems.

Sensor networks are huge networks of small entities used to monitor wild
zones. Sensors are nowadays cheap enough to allow the constant growth of net-
works. The main problem concerning those networks is to have a good scheme
of messages propagation to minimize the power consumption. In chapter 8 I de-
scribe a new data dissemination protocol for this purpose. This work led to an in-
ternational publication in the 13th ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWIM 2010) [17].

I also focus on cluster and grid applications. It is really important for these
applications to be fault-tolerant. There are only two ways to ensure this on such
applications. Either it is mathematically proved or the design of the application
is verified using formal methods. On the other hand you can attest that your
application is fault-tolerant through an extensive series of tests or simulations.

A proof (defined by formal methods) or a verification through model check-
ing is doable on really small systems. It is almost impossible to correctly model
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an application that will run on many computers (due to the state space explosion
phenomenon). Thus the only viable solution is to conduct experiments. Those
experiments should be conducted in a totally controlled environment leading to
the creation of dedicated platforms to test large-scale applications. I present in
chapter 9 a testbed for large-scale applications. This work was presented in the
6th ACM conference on Computing Frontiers (CF 09) [47] and was later ex-
tended with the same co-authors in a book chapter [46].

This chapter is structured as follows. In section 7.1 I introduce sensor net-
works together with our problem and existing solutions. Section 7.2 presents
clusters and grids and their challenges. It also presents the difficulty of develop-
ing applications for such systems and the huge need for a thorough analysis.

7.1 Message propagation in sensor networks

7.1.1 Sensor Networks

A sensor is a small unit, whose objective is to aggregate data in its environ-
ment, transform it into a numeric message and send this message to a sink node
if necessary.

Sensors communicates between themselves using wireless techniques. Their
neighborhood consist of all nodes inside a certain radius as illustrated in Fig 7.1.
The technology used for communication highly influences the capability of the
signal to go over obstacles or the power required to send a message.

Since they are small, sensors have high limitations in terms of power and
memory. They are autonomous units and embed most of time an non-rechargeable
battery, thus power consumption is a real issue when using sensors.

Sensors only make two things, gather data and exchange messages. Exchang-
ing messages consumes much more energy than obtaining data. It is then really
important to minimize the number of messages that circulates between the sen-
sors.

The topology of a sensor network is not known by the sensors, they only
have a local knowledge of this topology. Those networks are supposed to cover
a wide area and sensors are not displayed by hand but more likely uniformly
disseminated.

This implies that sensors can land anywhere, so it is impossible to predict the
topology of the network. Moreover sensors may fail, others may be added to the
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Communication 
radius

FIGURE 7.1 – Illustration of the communication radius in a wireless sensor net-
work

network implying a topology changing over time. In some cases, more complex
sensors may also be able to move, generating a changing topology as well.

Promoted by the military research since they are the ideal tool to monitor a
battlefield or verify the contamination state of a region before deploying troops,
sensor networks were a pretty active field [1, 41, 25]. The idea that during the
nineties it was made possible to produce small sensors at a low price is widely
spread in the literature. This is really controversial and has not been proved. But
it has triggered a huge interest for scalability related algorithmic issues.

Many academic disciplines are interested by sensor networks. The main
fields interested by sensor networks are the following, environment, military,
health, home and commercial for applications as diverse as fire detection, battle-
field surveillance, monitoring a patient’s condition without intrusive procedures,
buildings weaknesses detection, better management of home automation to save
energy, real time tracking of parcel post, . . .
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7.1.2 How to efficiently propagate messages in sensor
networks

The key issue of sensor networks is message propagation. I present in this
thesis joint work done to propose a new scheme that reduces the number of mes-
sages exchanged to disseminate data in the network. This work can be used by
zone monitoring wireless sensor network (WSN) applications : a large number
of sensors is deployed to collect data or events in a specified geographic area.

Data collected by sensors is later gathered by an entity called sink node 1,
which will store and process the whole network data. A sink can be static or
mobile. In the former case, connectivity to at least one sink in the network has
to be assured in order to guarantee a good information retrieval. In the later
case, the mobile sink has the flexibility to move over the network and gather the
collected data, and the multi-hop sink connectivity is not always required [21,
68]. For these reasons, data management reveals to be an important design issue
in monitoring-based WSNs.

A key challenge in this context is how to efficiently distribute and store mon-
itored data such that it can be later sent to or retrieved by a sink ? A failure in
this process might result in data loss. Much work has been carried out on data
dissemination in WSNs. Basically, these works can be categorized as reactive or
proactive approaches. In the reactive approaches, sensors have to react to indica-
tions of the position of static sinks or of trajectory taken by mobile sinks, so that
their monitored data can be sent accordingly to the sinks location [54, 69, 6]. In
proactive approaches, the monitored data should be disseminated through the de-
ployment region in advance so that (i) connected paths may be later established
between storing nodes and the static sinks or (ii) the mobile sink may later visit
the storing nodes [91, 42, 96]. In the latter case, the way the data dissemination
is performed will determine if the sink trajectory may be either predetermined
with controlled mobility [97, 42] or free by following an uncontrolled mobility
pattern [96]. Fig 7.2 represents a WSN where red nodes between the two curves
represents either nodes connected to the sink in the static case or nodes on the
sink trajectory in the dynamic case.

Additionally, given the resource-limited characteristics of sensors, any data
dissemination mechanism developed for them must be simple and incur low
overhead. Assuring an efficient data dissemination by only using local inferred
neighborhood knowledge while respecting resource constraints is thus an inter-

1. A sink is a node with no resource limitation.
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FIGURE 7.2 – WSN with storing nodes represented in red

esting challenge in WSNs and the focus of our research. In fact, the difficulty
in selecting well distributed storing nodes in a network strongly depends on the
amount of network knowledge available to sensors. If every sensor has a com-
plete knowledge of the network, selecting storing nodes becomes trivial. On the
other hand, if sensors are only aware of their neighborhood and have no location
information, ensuring that a set of well selected storing nodes in the network
emerges from individual decisions is challenging.

Although a large amount of effort has been invested in designing data dis-
semination algorithms for WSNs [96, 42, 6], the provision of a lightweight data
distribution strategy adaptable to any criterion of storing nodes’ selection (e.g.,
storage capability, energy constraints, network location, equal storing load dis-
tribution, etc) has not received similar attention.

To counter these issues, joint work realised with Aline Carneiro-Viana, Thomas
Hérault, Sylvain Peyronnet and Fatiha Zaı̈di in chapter 8 presents a flexible
proactive data dissemination protocol, called Supple.
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7.1.3 Related work : data dissemination in WSNs

In the literature, much work has been carried out on data dissemination in
WSNs. The way the data dissemination is performed depends, however, on how
the sink gathers the monitored data made available by the sensors in the network.
In a general point of view, data aggregation allows a structural organization of
the network topology. This organization can be : reactive or proactive.

Surveying the literature, it appears that early research on reactive approaches
in wide-area static sensor networks can be traced back to Directed Diffusion [54]
and SPIN [44]. [103, 45] are other examples of works dealing with static sink
and reactive dissemination strategies. [103] establishes a data collection tree by
query propagation from sinks. [45] is based on a isobar mapping, which allows
to build a topographic map of a space populated by sensors and data aggregation
with nodes similarity depending on collected data. In this last years, [67] has
proposed an approach that combines the push and pull queries strategies, known
as an hybrid approach. Among the proactive approaches, Ratnasamy et al [91]
proposed the use of a Distributed-Hash-Table structure on top of the geographic
routing protocol (GPSR) to support data-centric storage. In [43], a clustering-
based protocol is proposed to transmit data to the base station.

On the other hand, the presence of sinks that can move and directly collect
data from sensor nodes in a monitored area, avoids the necessity for sensor-to-
sink path maintenance in the network. [69, 6] are examples of reactive dissem-
ination approaches where the mobile sink follows a controlled, and thus pre-
dictable, trajectory. In this case, the sink must visit some predefined nodes to
retrieve a representative view of the monitored data. On the other hand, reactive
dissemination approaches where the mobile sink follows a free, i.e. uncontrolled,
trajectory, requires the sensors to track the sink mobility in order to adapt or in-
fluence the data dissemination [101, 56]. In summary, these reactive proposals
must dedicate a significant amount of resources to track the sink and to forward
on-the-fly the data to be collected towards the mobile sink.

In proactive data dissemination strategies with predictable sink mobility, data
is sent by sensors to a well selected subset of nodes, typically forming a virtual
structure, to be later retrieved by the mobile sink [97, 42]. On the other hand, if
the mobile sink performs an uncontrolled mobility, no structure can be defined.
In this case, the dissemination should be performed in a way that allows the sink
following a free trajectory to retrieve a representative view of the monitored area
by visiting a relatively small number of any nodes in the network [96].
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7.2 Large scale applications

7.2.1 Cluster & Grids

The computation needs are always increasing because people are trying to
resolve problems with growing sizes. One computer is now not enough to resolve
a problem in a reasonable time or can not store the instance of the problem in its
memory.

There are two approaches to overcome computation power issue. The first
one is to build “supercomputers”, huge machines that gather many CPUs and a
huge memory. But these computers are very expensive and hard to build.

People then decided to regroup computers in order to sum their capabilities
to solve problems. They are several ways to regroup computers to overcome
computation and memory issues.

Clusters. The first one is to create clusters, i.e. groups of identical computers
connected through a high speed, reliable network. The size of these clusters is
nowadays around hundreds of computers. Computers in clusters are all on the
same site to reduce time needed to exchange information and increase the relia-
bility of communications.

The idea is to divide the computation between all the computers using sev-
eral paradigms, distributed or parallel computing for example. To the end user,
the cluster is seen as one machine where a computation is sent. Then specific
software is use to divide the computation between the nodes in the cluster and
gather the result once every body is done. Clusters may also be used for compu-
tation and data replication offering some quality of services in case one of the
cluster nodes is subject to a failure.

Grids. As stated by Ian Foster in [33], They are three requirements for a system
to be considered a grid. These are the requirements as written by Ian Foster,

“
1 Coordinates resources that are not subject to centralized control ... (A Grid

integrates and coordinates resources and users that live within different
control domains—for example, the user’s desktop vs. central computing ;
different administrative units of the same company ; or different compa-
nies ; and addresses the issues of security, policy, payment, membership,
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and so forth that arise in these settings. Otherwise, we are dealing with a
local management system.)

2) ... using standard, open, general-purpose protocols and interfaces ... (A
Grid is built from multi-purpose protocols and interfaces that address such
fundamental issues as authentication, authorization, resource discovery,
and resource access. As I discuss further below, it is important that these
protocols and interfaces be standard and open. Otherwise, we are dealing
with an application- specific system.)

3) ... to deliver nontrivial qualities of service. (A Grid allows its constituent
resources to be used in a coordinated fashion to deliver various qualities
of service, relating for example to response time, throughput, availabil-
ity, and security, and/or co-allocation of multiple resource types to meet
complex user demands, so that the utility of the combined system is signif-
icantly greater than that of the sum of its parts.)

”
Computation grids are composed of many heterogeneous computers in sev-

eral geographic sites connected through a long-distance unreliable network. The
idea behind grids is to utilise every cycle of a computer in the grid maximizing
the computation power.

Grids often propose much more raw resources than clusters. The two archi-
tectures are not competitors since they are not used for the same purpose. But
developing for both architectures implies the same kind of problem.

7.2.2 Managing failures in large-scale systems
One challenge of the utmost importance in large-scale applications is the

fault-tolerance. Going from one to several machines to solve one problem creates
many issues. Someone has to decide how to divide the computation to create his
application.

The resulting application is more prone to failures. Using only one computer,
two kinds of fault may appear. The computer may crash thus ending the compu-
tation or the result may be incorrect due to memory corruption for example. By
coupling machines, communication is introduced. Messages can be lost and/or
corrupted which is another source of error. Plus errors can be propagated leading
to bigger errors.

When developing a cluster or grid application, one should take extra-care
making his application fault-tolerant. It is really important to guarantee that
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even in the presence of failures the computation will end correctly in a rea-
sonable amount of time. Obviously when you are using hundreds of computers
for several hours exchanging thousands of messages, something will go wrong,
computers will crash, messages will be lost and/or corrupted.

It is then an important challenge, extensively covered in the literature [89,
102]. To ensure fault-tolerance, people use various techniques that often consists
in an upper layer in communications protocol in order to detect failures or data
corruptions.

During such a development, one must ensure that his application is fault-
tolerant. It is really important to get behavioral guarantees on the application.
Monitoring an application behavior at large scale has its own problems too. The
first one being the resources. Indeed, it is often hard to obtain all the machines
needed to realise an experiment, it is harder to obtain them just to test your ap-
plication since you may need them on a long period of time to run all your tests.
Plus you have to control your environment in order to understand what went
wrong or why everything went right. The ability to reproduce the conditions is
important to ensure that an application passes the exact same tests it has failed
before.

7.2.3 Evaluation of large-scale applications
One of the most important issues for the evaluation of a large-scale appli-

cation is to monitor and control the experimental conditions under which this
evaluation is done. This is particularly important when it comes to reproducibil-
ity and analysis of observed behavior. In grid software systems, the experimental
conditions are diverse and numerous, and can have a significant impact on the
performance and behavior of these systems. As a consequence, it is often very
difficult to predict from theoretical models what performance will be observed
for an application running on a large, heterogeneous and distributed system. It is
thus often necessary and insightful to complement the theoretical evaluation of
parallel algorithms with simulations and experiments in the “real world”.

However, even with detailed monitoring procedures, experiments in the real
world are often subject to the influence of external events, which can prevent
more detailed analysis. More importantly, the experimenters usually have access
to only a small variety of distributed systems. In general, experimental condi-
tions are not strictly reproducible in the real world. The approach usually taken
to broaden the scope of the evaluation consists in designing simulators, under
which the experimental conditions can be as diverse as necessary. The “real
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world” experiments can then help to validate the results given by simulators
under the reproduced similar conditions.

Still, simulators can only handle a model of the application, and it is hard to
validate an implementation, or guarantee that the end user application will meet
the predicted performance and behavior. Here, we study another tool for experi-
mentations : emulators. Emulators are a special kind of simulator, which are able
to run the final application, under emulated conditions. They do not make the
same kind of abstraction as normal simulators, since they emulate the hardware
parts of all the components of the real world infrastructure, and thus capture the
complex interactions of software and hardware. Yet, since the hardware is emu-
lated in software, the experimenter has some control on the characteristics of the
hardware used to run the application.

Through this control, the experimenter can design an ad-hoc system, suitable
for his experiments. Of course, the predicted performances must still be validated
by comparison with experiments on real world systems, when such systems ex-
ist. But within an emulated environment, the experimenter can inject experimen-
tal conditions that are not accessible in a real environment, or not controlled. A
typical example of such condition is the apparition of hardware failures during
the experiment. With a real system, hardware failures are hard to inject, and hard
to reproduce. In an emulated environment, hardware is software-controlled and
the experimenter can design a reproducible scenario of fault injection to stress
fault tolerant applications. This is crucial in fault-tolerant systems, since the im-
pact of the timing and target of a failure can impact tremendously on the liveness
and performance of the application.

Emulators can be designed at different levels of the software stack. A promis-
ing approach for emulators is the use of virtual machines (VM, see [87]). A VM
by itself fits partially the goals of parallel application emulators, since it emu-
lates (potentially multiple) instances of a virtual hardware on a single machine.
In addition to these virtual machines, we need to link them through a controllable
network. In chapter 9, I present V-DS, a platform for the emulation of parallel
and distributed systems (V-DS stands for Virtual Distributed System) through
virtualization of the machines and the network.

This platform was initially realised by Benjamin Quétier, Mathieu Jan, Thomas
Hérault and Franck Cappello. I added the low-level network emulation with the
protocol EtherIP [52] to enable the emulation of grids on clusters.
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7.2.4 Existing solutions for large-scale applications
development

Recently, the number of large-scale distributed infrastructures has grown.
However, these infrastructures usually fall either into the category of production
infrastructures, such as EGEE 2 or DEISA [74], or in the category of research in-
frastructures, such as PlanetLab [22]. To my knowledge, only one of the testbeds
in the latter category, namely Grid’5000 [16], meets the mandatory requirement
for performing reproducible and accurate experiments : full control of the envi-
ronment.

For instance, PlanetLab [22] is a good example of testbed lacking the means
to control experimental conditions. Nodes are connected over the Internet, and
a low software reconfiguration is possible. Therefore, PlanetLab depends on a
specific set of real-life conditions, and it is difficult to mimic different hard-
ware infrastructure components and topologies. Consequently, it may be diffi-
cult to apply results obtained on PlanetLab to other environments, as pointed out
by [40]. Grid’5000 [16] consists of 9 sites geographically distributed throught
France. It is an example of a testbed which allows experiments in a controlled
and precisely-set environment. It provides tools to reconfigure the full software
stack between the hardware and the user on all processors, and reservation capa-
bilities to ensure controllable network conditions during the experiments.

However, much work remains to be carried out for injecting or saving, in an
accurate and automatic manner, experimental conditions in order to reproduce
experiments.

Finally, Emulab [99] is an emulation platform that offers large-scale virtual-
ization and low-level network emulation. It integrates simulated, emulated and
live networks into a common framework, configured and controlled in a consis-
tent manner for repeated research. However, this project focuses only on the full
reconfiguration of the network stack. Moreover, Emulab uses extended FreeBSD
jails as virtual machines. Inside jails, the operating system is shared between the
real machine and the virtual machine, thus killing a virtual machine is the same
as killing a process. It means that this framework may not simulate real (phys-
ical) machine crashes. To the contrary, our work uses Xen virtual machines,
allowing to either shutdown the machine or crash it, which will leave the con-
nections open. As will be demonstrated in the experiments section, this is a much
more realistic crash simulation since a crashed machine never closes its connec-

2. EGEE Team. LCG. http://lcg.web.cern.ch/, 2004.
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tions before disappearing from the network.
Software environments for enabling large-scale evaluations most closely re-

lated to ours are [14] and [77]. [14] is an example of integrated environment
for performing large-scale experiments, via emulation, of P2P protocols inside
a cluster. The proposed environment allows the experimenter to deploy and run
1, 000, 000 peers, but at the price of changes in the source codes of tested pro-
totypes and supporting only Java-based applications. Besides, this work concen-
trates on evaluating the overhead of the framework itself and not on demonstrat-
ing the strength of it by, for instance, evaluating P2P protocols at a large scales.
In addition, the project provides a basic and specific API suited for P2P sys-
tems only. P2PLab [77] is another environment for performing P2P experiments
at large-scale in a (network) controlled environment, through the use of Dum-
mynet [86]. However, as for the previously mentioned project [14], it relies on
the operating system scheduler to run several peers per physical node, leading
to CPU time unfairness. Modelnet [93] is also based on Dummynet. It uses the
same scheme except that the network control nodes do not need to co-scheduled
on the compute nodes. In Modelnet, network nodes are called core nodes and
compute nodes edge nodes. But, as in P2PLab, multiple instances of applications
are launched simultaneously inside edge nodes, consequently it relies again on
the operating system to manage several peers.

Finally, simulators, like Simgrid [18], GridSim [15], GangSim [27], Optor-
Sim [7], etc. are often used to study distributed systems. Simgrid [18], which is
designed to test scheduling algorithms, makes event-driven simulation where re-
sources are defined through two characteristics, the latency and the service rate.
GridSim [15] is a toolkit based on Java virtual machines and allows to define
many parameters during the simulation like the machines locations of define
resources time- or space- sharing. OptorSim [7] is also written in Java and its
objective is to study the effectiveness of replica optimisation algorithms in grids.
Finally GangSim [27] is a simulator that study scheduling strategies on grids
with a special attention on resources allocation policies. The main problem with
simulation is that it successfully isolates protocols but does this at the expense of
accuracy. Some problems that have been overlooked by the abstractions done in
the simulation will not be exhibited by simulations but will be observed when the
real application is launched, so conclusions from simulation may not be valid,
like in [32].
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QOS IN SENSOR NETWORKS

This chapter proposes a new data dissemination protocol for sensor networks
called Supple. Amongst all scenarios presented in the previous chapter it was
chosen to focus on the proactive data dissemination strategy and on how to select
well distributed storing nodes in WSN. In this approach, sinks may be then either
static and located on the border of the network, or mobile with its trajectory
unknown to the sensors.

Supple allows data dissemination to a subset of nodes in the network by
following any previously defined selection criterion. One example of selection
criterion concerns a subset of border nodes, which can be an interesting storing
option if sinks are located close to the network border or follow a controlled
trajectory defined by the border nodes location. Otherwise, by uniformly dis-
tributing data over the target set |S| = n, Supple can be also adapted to the case
where the mobile sink performs uncontrolled mobility. Nevertheless, contrarily
to the approaches presented in [96, 4], Supple allows an efficient data dissemi-
nation with a lower communication overhead.

The principle of the data dissemination scheme Supple is the cladding of a
topology over the sensor network to create a specific routing between nodes with
a maximal distance in O(log(n)) steps.

The novelty of Supple is its flexibility in selecting good storing nodes re-
specting the established selection criterion without having a global network knowl-
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edge. Additionally, in a network with n nodes, Supple guarantees that the contact
and data gathering by a sink from only m storing nodes, where m << n, will
allow it to get a “representative” amount of data of the whole network.

Supple empowers sensors with the ability to make storing decisions that rely
on neighborhood information only and flexible selection criteria, which can fol-
low any predetermined distribution law.

8.1 Supple description

Supple is based on three phases : neighborhood discovery, weight distribu-
tion, and data dissemination. Sensor nodes use a simple tree-based structure,
constructed during the neighborhood discovery phase, which allows weight dis-
tribution amongst nodes. Weights are based on a predefined criterion of selection
as well as a distribution law, and are used by sensors at the data dissemination
phase. At this phase, sensors then make on-the-fly forwarding and data storing
decisions based on their own weights and the weights of their neighbors. Sup-
ple takes thus advantage of the bias amongst different sensors’ weights for good
data dissemination. This behavior can be used for uniform data distribution, by
assigning equal weights to all sensors as well as for specific data distribution,
by assigning high weights to specific selected set of sensors. This later distribu-
tion can be useful, for instance, in cases where, to avoid network disconnections,
only border nodes are used for storing activities : referred here as location-based
data distribution.

This chapter provides a detailed formal analysis of the implementation of
Supple. It then analytically compares Supple with other data dissemination tech-
niques, such as RaWMS [4] and flooding. Although Supple achieves the same
properties as RaWMS for uniform data dissemination, it will also be shown it
has a much better message complexity (ie., Supple uses exponentially fewer
messages than RaWMS). Moreover, Supple has the advantage of being flexible,
meaning it allows disseminating data on any subset of the nodes with any distri-
bution. Finally, by simulations, we study the performance of Supple on a large set
of topologies and compare it to RaWMS. The simulation results largely confirm
the theoretical analysis. In addition, they show Supple is practical and effective
in distributing data amongst selected storing nodes that respect the predefined
distribution criterion with limited network knowledge. Simulation results also
show that Supple outperforms RaWMS in term of robustness to message losses.
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8.2 Rationale and system model
The storing selection flexibility feature of Supple allows its combination with

data gathering strategies based both on static or mobile sinks, with the condition
of accordingly setting the predefined selection criterion. For instance, in the case
of static sinks located close to the border of the network, a location-based data
dissemination may be used, where only border nodes would perform storing
activities.

Case of study. Let’s consider an application where a large number n of sensors
are randomly scattered on a given geographic area for collecting data or moni-
toring events. Data can be collected by a finite set of static or mobile sinks.

Nodes. All sensors are uniquely identified. Sensors are all equal in terms of
computational, memory, and communication capabilities. No synchronization is
required. Following the proactive data dissemination’s procedures, each sensor
node in the network is provided with a partial view regarding some other nodes
(including itself). In this way, each node may act as a storage node for some other
nodes in the WSN, but not for all of them. By slight abuse of terminology, we will
use the term view both for the actual information stored at a given node p and for
the IDs of the nodes whose information is stored at p. The size of views will be
analyzed in the following sections. To counter the limited buffer of sensors, we
consider the use of power-aware compression algorithms to deal with the main
drawback of partial views of s entries at storage nodes [71]. Generally, if the
latency is not an application issue the data collected by sensors can be locally
compressed before being disseminated, reducing the network traffic and thus
prolonging the network lifetime. For instance, algorithms like the one presented
in [71] reaches compression rations up to 70% on environmental datasets.

Communication. Each node i is able to wirelessly communicate with a subset
of neighbors that are within i’s transmission range : a transmission disk centered
on i with radius t. We assume bidirectional communication and that the average
density of nodes davg = πt2n

a2
is such that the resulting communication network

is connected [36]. The network is thus modeled as a 2-dimensional Unit Disk
graph G2 = (n, t), being G = (V,E) where V is the set of network nodes and
E models the one-to-one neighboring links.

Limited initial knowledge. Initially a node i ∈ V only knows its identity, the
fact that no two nodes have the same identity, and a parameter W (i) that define
its weight in the network (W : V → N is called the weighting function). Weights
are initially assigned to nodes based on an external criterion of storing nodes’
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selection. For uniform selection, all sensors will have the same weight and then,
the same chances to be selected as storing node by another node. On the other
hand, if the criterion is a location-based selection (e.g. the network border) only
nodes at the specified location will be used as storing nodes : each sensor i
will have W (i) = 1 if it is, for example, located on the border of the network,
and W (i) = 0 if it is an insider node (cf. [84] for border detection strategies).
Supple may also rely on the use of dynamic weights amongst selected storing
nodes : e.g. to give to nodes located on the network border and having higher
storing or energy capabilities, a higher probability of storing. In this case, an
external mechanism should provide this information and accordingly assign the
parameterW (i) > 0 to each node i. This however, is not the focus of this chapter.
Hereafter, I use the term target set to refer to the subset of nodes with weight
greater than 0, i.e. the storing nodes. Finally, nodes do not know their position
and we do not use any geographic knowledge in this algorithm. The presented
hereafter approach relies solely on node connectivity.

8.3 Supple : formal presentation
In this section, I formally present the supple algorithm. Supple’s goal is to

allow each node sending its collected data to a target set. Using Supple, it is
possible to ensure that each storing node of the target set has a view of controlled
size s containing data collected by any s nodes in the network, which are chosen
according to the Supple algorithm. The general principle of Supple is described
in Fig. 8.1. Further details are provided in the following sections.

8.3.1 Tree construction
Let G = (V,E) be the graph that represents the network. The first step of

Supple relies on a tree construction : a tree-based routing structure T (G) initi-
ated by a central-localized node in the network and that is at least binary. The
constructed tree T (G) embeds the connectivity of the network and ensures that
sampling a node according to a given distribution can be done with a logarithmic
number of hops. In particular, Supple requires a bootstrap phase where T (G) is
constructed using a cost metric propagated in 1-hop Hello messages. The con-
structed T (G) structure is thus an aggregation of the shortest paths from each
sensor to the central-localized node based on a cost metric, which can represent
any application requirement : hop count, loss, delay amongst others. An impor-
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Supple Input : Graph G = (V,E)
Input : Target set S ⊆ V
Input : Weighting function W : S → N
Input : View size s ∈ [1, . . . , |V |]

1. Construction of the tree T (G) from G

2. Propagation of the weights of the target set nodes

3. For each node i ∈ V
send data(i) to the root of T (G)

4. The root propagates each data(i), r(s) times according to the
probabilities induced by the weights over the target set

FIGURE 8.1 – Principle of Supple.

tant set of routing protocols in WSNs are based on the construction of a tree-
based routing topology rooted at the sink [54, 70]. Other tree-based structures
that can be used in conjunction with Supple are PeerNet [29] and Tribe [95].
PeerNet [29] in particular, constructs a binary tree. Finally, Supple can be adapt-
able to any kind of structure, the only requirement being the routing capability.

In the rest of this chapter, I consider that the T (G) construction is performed
with a hop count metric and that the tree is binary. The complexity of the tree
construction is then O(n). Note that this is done for the sake of clarity and it is
not a limitation of our method.

8.3.2 Weight distribution
The flexibility of Supple is given by the fact that the data dissemination can

be adapted to any target set (denoted by S). For this, all nodes of the target
set have a weight assigned through a function W : S → N. The probability
of sending data to a particular node i is given by the weight assigned to node
i with respect to the sum of all weights of storing nodes in the target set. Al-
though allowing the use of any selection criterion of storing nodes (e.g., uni-
form, location-based, energy-based, etc), I consider in this chapter, the uniform
selection criterion in order to allow the comparison with the related approach
RaWMS [4]. For this reason, |S| = V and for all nodes i ∈ S, W (i) = 1. This
will give to all nodes the same chances to be selected as storing nodes. Once
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Weight distribution
Input : Tree T (G)
Input : Target set S ⊆ V
Input : Weighting function W : S → N

For each node i ∈ T (G) create a triple (li,W (i), ri)
For each node i ∈ T (G) in a breadth-first search starting from the leaves

do let j := left child of i in li = lj +W (j) + rj
do let p := right child of i in ri = lp +W (p) + rp

FIGURE 8.2 – Weight distribution in T (G).

equal weights are assigned to nodes, they perform the weight distribution over
the tree, as depicted in Fig. 8.2. The idea behind this algorithm is to initialize
each node i ∈ S with a triple (li,W (i), ri), where li (resp. third component ri)
is the weight of the left (resp. right) subtree of i and W (i) is the weight of the
node i in the target set.

It is clear that the complexity of the whole weight distribution process is
Θ(n). Additionally, the weight distribution only requires a field of at most log n+
log |W | bits in the usual Hello packet.

8.3.3 Data dissemination
The data dissemination is the most important phase of Supple. This phase

ensures the proper data propagation to storing nodes. Since I consider here that
nodes have the same weight, this phase has to ensure an uniform distribution of
nodes’ data amongst the target set.

The idea is the following. Firstly, all nodes must send their data to the root of
the tree (i.e. the node that started the tree construction), as detailed in Fig. 8.4.
When the root receives a new data from one of its children, it means that a
node is propagating its information for dissemination into the target set. The root
propagates then, r(s) times the data to its children. This will ensure the views
are of size s (cf. Proposition 2) . The propagation by the root is done according
to the weights of its left and right subtrees and also to its own weight (in the
case the root is also in the target set). The Forward data algorithm depicted in
Fig. 8.3 formally presents this local propagation. Moreover, it must be noted that
messages are forwarded asynchronously, i.e. there is no reason for the root to
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TABLE 8.1 – Comparison between Supple, RaWMS, and flooding.

# rounds msgs per round mem. overhead add. overhead
Supple r(s) n · log n view size s 3 ints per node

RaWMS r(s) n2 view size s
flooding 1 n2 broadcasts linear flooding mem.

Forward data
Input : Tree T (G) with a triple (li,W (i), ri) for each i ∈ T (G)
Input : viewsize s
Input : data d

(code for node i)

Pick at random uniformly x ∈ [0, li +W (i) + ri]
If x < li then send d to left child
If li ≤ x ≤ li +W (i) then store d in own view
If W (i) + li < x then send d to right child

FIGURE 8.3 – Algorithm for forwarding data down into the tree.

finish the r(s) sequential data sending of a node to start sending data of another
node. Thus, each node forwards messages coming from its parent according to
the Forward data algorithm (cf. Fig. 8.3). It is worth noting that the algorithm
naturally stops when the message is received by a node whose left and right
component of the triple equals to 0.

At the end of the data dissemination, all nodes of the target set will have,
with high probability, a view of size s. This view is randomly composed by
nodes’ data distributed according to the weights given on the target set. In the
case weights are equal for all nodes, it naturally achieves view of size s with
uniformly disseminated data.

The complexity of the data dissemination is the keypoint of Supple. Each
node sends its data to the root, which implies O(n log n) messages since nodes
are at distance O(log(n)) from the root at most. Then each data is propagated
r(s) times through the tree (from the root to the leaves), resulting in O(n · r(s) ·
log n) messages. Finally, the complexity in term of messages of the whole pro-
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Data dissemination
Input : Tree T (G) with a triple (li,W (i), ri) for each i ∈ T (G)

For each node i ∈ V do
Send data to its parent

On reception from a child by node i do
if i 6=root then forward to parent
if i =root then do r(s) times

Forward data

On reception from the parent by node i do
Forward data

FIGURE 8.4 – Algorithm for the data dissemination.

cess is O(n · r(s) · log n). In this way, Supple outperforms the message com-
plexity of the related work closest to Supple, the RaWMS[4], which achieves a
complexity in term of messages of Θ(n2 · r(s)).

8.3.3.1 Formal analysis

Here, we address the problem of computing the number of times a message
must be sent through the tree in order to ensure that the size of the views will
be, with high probability, s. Intuitively, if each disseminated node data would
have reached a different storing node, then in order to obtain a view of size s,
it would have been enough to start s data sending at each node, during the data
dissemination phase. Nevertheless, two data sending started at the same node i
have a non-negligible probability of reaching the same storing node j. Thus, in
order to obtain the target view size s, each node should start a larger number r(s)
of sending, where r(s) > s. The following proposition gives an explicit lower
bound for the value of r(s), depending on s.

Proposition 2 (Computation of r(s)) Let n be the number of nodes in the tree
T (G). To obtain, with high probability, a view of size s, r(s) messages must be
sent, where :
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r(s) =

{
n ln( n

n−s) if s 6= n,

n lnn if s = n

Proof 1 Let’s first consider the case where s 6= n. We want to compute the num-
ber of messages that must be sent in order to obtain with high probability, s
different nodes, performing the data dissemination according to uniformly dis-
tributed weights. The number of unreachable nodes p after r(s) messages is :
E(p) = n− s, which can be rewritten as

n(1− 1

n
)r(s) = n− s

Using the classic inequality (1− x)y ≤ e−y.x this means :

e(−r(s)/n) ≥ n− s
n

By choosing r(s) = n ln( n
n−s), we obtain the aimed expectation, i.e. balanced

views of size s.
Let’s now prove the case where s = n. In this case we have n · e(−r(s)/n) = 0.

Using r(s) = (k + 1) · n lnn (with k ∈ N), we obtain :
n · e(−r(s)/n) = n−k.

This means that the probability of a collision can be as small as wanted.

Another point of interest is the relationship between the size s of the view
and the size |S| of the target set. Indeed, if the target set size |S| is too small
with respect to the view size s, not enough space will be available to store data
of nodes of the whole network. Hence, even if the data stored by all nodes in
the target set is gathered, it will not provide a representative amount of network
data. The following proposition addresses the relationship between s and |S|.

Proposition 3 (Relationship between s and |S|) Let |V | = n. If the view size
of each node is limited to s, then the target set S must contain at least Θ(n

s
lnn)

nodes in order to guarantee with high probability a good data storing and a
satisfying data gathering by a sink.

Proof 2 It uses the solution of the coupon collector’s problem that can be found
in [73] (pages 57–63). In this case the number of trials x is s× |S|, in [73] it is
proven that x ≥ n lnn, thus implying |S| ≥ n

s
lnn.
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The proposition 3 only gives hints to Supple users in order to make sure that
the size of the target set is large enough to store the nodes’ data of the whole
network. In the case where |S| = n, the Proposition 2 also gives the minimum
number of storing nodes m in the target set to be contacted by a sink in order
to gather a representative amount of data of the whole network. Note that only
the quantity of (n

s
lnn) target nodes has to be respected and the sink is free to

contact any node in the target set.

8.3.4 Discussion
Here, I discuss the pros and cons of Supple and compare its complexity to the

RAWMS strategy. The data dissemination of Supple has the flexibility and the
self-organizing feature of being adaptable to any kind of data distribution, this is
dictated by the way weights are distributed amongst nodes. In the particular case
of uniform distribution, this data dissemination is done more efficiently than in
the related approaches, thanks to the tree structure. Indeed, this implies a huge
improvement of the number of messages used to obtain the uniform distribution.

Additionally, Supple requires a small additional overhead in term of mem-
ory : only a triple of integers. Finally, Supple is robust to messages losses and
failures of storing nodes (as stated in section 8.4), since the data of each node
is replicated in r(s) storing nodes. If the sink is mobile, no path construction
among storing nodes and the sink is necessary, since the sink will directly con-
tact the storing nodes. For the special case where s =

√
n (i.e. s 6= n), we get

r(s) ≈ n
n−s ≈

√
n. This means that for relatively small view sizes, there is a very

little chance of getting collisions and that by only contacting m =
√
n storing

nodes a sink can get a representative view of the whole data in the network (i.e.,
s ∗m =

√
n ∗
√
n = n).

Regarding the assignment of dynamic weights to nodes, such as energy-
based weights, it is enough to associate energy-level thresholds with weights and
to redo the weights distribution phase each time the node energy falls below the
threshold. In this way, the probability of a node to be selected as a storing node
would be given by its weight and consequently, by its remaining energy. Note
that here, we only discuss how the flexible data dissemination algorithm Supple
can be performed according to the location and weights of nodes. So that, Sup-
ple can be adapted to any mechanism of weight assignment. The specification of
these mechanisms, however, is not the focus here.

Otherwise, with the construction of the tree, nodes close to the root become
hot spots, this can cause battery depletion of these nodes and consequently, tree
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disconnections. This can be avoided or minimized by the use of specific policies
for dynamically modifying the root of the tree, or by the generation and main-
tenance of multiple and different trees. However, the main goal was to evaluate
the main features of the Supple approach. Those kind of improvements are left
for future work.

Concerning the complexity, the most important results are the following. The
propagation of the weights is done withO(n) messages. The data dissemination
for each node, is done with O(r(s) · log n) messages. Thus, the total complexity
in term of messages for the data dissemination for all nodes isO(n ·r(s) · log n),
which is then the total number of messages used by Supple.

The table 8.1 summarizes the differences with RaWMS (see [4]) and flood-
ing.

8.4 Performance analysis
8.4.1 Evaluation methodology

Supple is evaluated through simulation using a home-made simulator. Each
simulation comprises a dissemination and a gathering phase. In the first phase,
each node performs Supple or RaWMS for data dissemination. In the data gath-
ering phase, a mobile sink performs as many visits as necessary to get a repre-
sentative amount of data of the network, meaning getting n different entries of
storing nodes’ views.

8.4.1.1 Experimental setup

Four scenarios has been considered, each experiment has been repeated 25
times and the results represent the average value of these experiments. In the
first scenario, the same topology and tree are used in all experiments in order
to evaluate the effects of the random choices performed by the Forward data
routine(cf. Fig. 8.3). In the second scenario, again the same topology is used but
different trees are generated for each experiment. By comparing these results to
the previous one, it shows how the tree construction impacts the performance of
the protocol. The third scenario compares the Supple protocol to the RaWMS
protocol on 25 different topologies. Finally, the forth scenario allows the evalu-
ation of the performance of both protocols in the presence of message losses.

It is worth mentioning that, in order to compare the dissemination capabil-
ities of Supple and RaWMS, no salvation mechanism was added to deal with
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message losses (e.g., in RaWMS, this mechanism establishes that if a low level
acknowledgment is not received for the just sent message, then another random
neighbor is chosen by the RW process). Its implementation could improve the
performance of both protocol under message losses.

8.4.1.2 Simulation parameters

The simulations involve scenarios with n = 1, 000 nodes placed at uniformly
random locations in a square area. The average number of nodes in the commu-
nication range of any node was set to a target average density davg = 24. Only
connected topologies were considered, where a binary tree was constructed from
the root (cf. section 8.3.1).

For comparison reasons with RaWMS, we set : (1) the size of the target set
to |S| = V = n and assign W (i) = 1 for all nodes i ∈ S ; and (2) nodes view
size to s = d

√
1, 000e = 32 entries and consequently, r(s) = d

√
1, 000e = 32

(cf. Section 8.3.3.1). As a buffer management policy, we consider a size-based
policy, which removes the oldest entry to make room for the new information
in the view. Finally, both protocols, Supple and RaWMS, handle multiple-entry
collisions : when adding a new entry to the view, they first check if it is already
known, thus no entry is added twice.

8.4.1.3 Evaluation metrics

To evaluate the cost and efficiency of Supple, we evaluate (1) the messages
overhead, which counts the amount of transmitted messages by each node (i.e., it
is important to ensure that the impact of both the tree and the random choices on
the communication are negligible) and (2) the efficiency in data gathering, which
is the accumulated amount of collected information after a node is visited by the
sink. It is known that, at the worst case, all the data can be gathered by visiting
all the nodes in the target set. Nevertheless, we want to know how fast the data
can be collected. In fact, by well distributing data amongst storing nodes (and
in the case |S| = n), Supple allows a mobile sink to perform free trajectories
and get a representative amount of information of the whole network by visiting
a small number m, where m << n, of storing nodes of the target set. In order
to evaluate this property, we consider a mobile sink will cross the network and
randomly visit nodes, gathering the data in their views.
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8.4.2 Simulated results
The results regarding the previously evoked metrics are presented in the fol-

lowing pages.
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FIGURE 8.5 – Average number of messages sent by a node in Supple as a func-
tion of its depth in the tree.

8.4.2.1 Communication overhead

Fig. 8.5 represents the average number of messages sent by a node as a func-
tion of its depth in the tree. The number is the average value obtained over 25
experiments, where the tree is the same and only the random choices made in
the algorithm are different (cf. Fig. 8.3). We sum all the messages sent by nodes
at a certain depth and then divide this number by the number of nodes which are
at this particular depth. As expected, the closer the node is to the root in the tree,
the more messages it has to send. Thus, as discussed in section 8.3.4, the use of
multiples trees and consequently multiples and well distributed roots, could help
on the distribution of message overhead amongst nodes in the network.

Additionally, the total number of messages seen at the end of each experi-
ment has been computed. It equals to an average of 3.1967E + 06 with a very
small variance for the 25 experiments, which demonstrates the limited influence
of the random choices of the protocol. Instead, as shown in [4], RaWMS presents
much higher overhead results for a smaller network : up to 5E + 03 messages
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for a network size of 800 nodes. When different trees are built on each experi-
ment, the number of messages equals to 3.2E+06 in average and the variance is
still small. This shows that the underlying network, the constructed tree, and the
random choices performed during Supple deployment do not really impact the
behavior of the protocol as long as it is “well balanced” (i.e. each non-leaf node
has at least two children). In addition, both results confirm the message overhead
analysis discussed in section 8.3.4.
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(b) RaWMS strategy.
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(c) Supple strategy with a fixed tree.
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(d) Supple strategy with a different tree per ex-
periment.

FIGURE 8.6 – Amount of collected information per visited nodes in a 1000-node
network

8.4.2.2 Efficiency in data gathering

Here, a mobile sink is firstly placed in a random position in the network, it
visits the nodes in this position, and then chooses the next node to visit, trying
to avoid revisiting an already visited node (as introduced in [34]). When the sink
visits a node it gathers this node’s data and all the information in its view. This
procedure is repeated until the sink has collected all the network information.
Fig. 8.6a and 8.6b show the amount of accumulated collected entries (repre-
sented in the graph by the number of gotten IDs of the stored data) the mobile
sink gathers per visited node. The results indicate that Supple gives similar re-
sults to the ones given by RaWMS. In particular, after visiting any 2.3

√
n ≈ 73
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nodes, the sink is able to collect information from about 90% of the nodes, as
implied by the analysis in Section 8.3 and [34]. Thus, these results confirm that
Supple with an exponential improvement of the number of messages (cf. Ta-
ble 8.1 in Section 8.3) compared to RaWMS, allows the mobile sink to achieve
a high representative view (i.e. 90%) of the whole network data, by only visiting
a relative small number of nodes network, i.e. 73 nodes over 1, 000 (7.3% of
nodes).

Additionally, Fig. 8.6c and 8.6d show that random choices as well as the use
of different trees at the tree construction phase do not affect the good perfor-
mance given by Supple in the amount of collected information (i.e. 90% of total
data when only 7.3% of network nodes are visited).



122 CHAPITRE 8. QOS IN SENSOR NETWORKS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  200  400  600  800  1000

N
b.

 o
f c

ol
le

ct
ed

 ID
s

Nb. of visited nodes

RaWMS
Supple

(a) Under 5% of loss rate.

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1e-05  0.0001  0.001  0.01

N
b.

 o
f c

ol
le

ct
ed

 ID
s

Probability of message loss

RaWMS
Supple

(b) After visiting 200 nodes and under differ-
ent loss rates.

FIGURE 8.7 – Amount of collected information per visited node in 1, 000-node
network.

8.4.2.3 Loss resilience

Fig. 8.7a shows the performance in data gathering of both protocols, when
the probability of loosing a message is 5%. The performance of Supple is not
affected by the loss rate, whereas RaWMS is unable to tolerate this low level
of failures. This is clearly understandable since the RaWMS protocol exchanges
exponentially many more messages than Supple. The probability for a message
to be delivered in the RaWMS protocol with 5% of messages loss is 0.951998 '
3.10286848 × 10−45, which is close enough to zero to result in no message re-
ception. In particular, the effect of messages losses in the RaWMS efficiency is
only reduced when unicast packet retransmissions and the salvation mechanism
is implemented, as shown in results in [4].

Finally, Fig. 8.7b shows the averaged number of data the sink has gathered
information after having visited 200 nodes, under different loss rates. We can
see that when the message loss percentage is higher than 1‰, the performance
of the RaWMS protocol decreases rapidly, while the Supple protocol still keeps
good performances. This is again explained by the fact that RaWMS exchanges
exponentially many more messages than Supple.
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8.4.3 Conclusion
Supple provides an exponential improvement of the number of messages

used, when compared to RaWMS. The choice to use a tree, however, introduces
a high overhead of messages transmission to the root and its vincinity. A solution
to this consists in creating multiple trees with different roots and load balancing
the data dissemination on the different trees, alleviating the communications re-
quirements imposed to a unique root. Such solution can be easily implemented
by randomly selecting uniformly distributed nodes in the network for initiating
the tree construction.

Additionally, the simulations demonstrate that Supple behaves as predicted
by the theoretical analysis : a very high proportion of n data can be distributed in
a way that, it is still possible to gather most of the network data by only visiting a
small portionm = 2.3

√
n of the target set, wherem << n. Regarding efficiency

in data gathering, Supple provides the same quality of data dissemination as
the RaWMS protocol, but with more flexibility, since the storing nodes may be
selected following any criterion of distribution. The simulations also illustrated
that, due to its relatively small number of message transmissions when compared
to RaWMS, Supple can tolerate a much higher failures rate without requesting
additional link reliability or extra salvation mechanisms.
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TEST FOR LARGE SCALE

APPLICATIONS

This chapter introduces a testbed for large-scale applications called V-DS.
This testbed is an emulator and offers a complete control over the experimental
conditions when stressing an application.

V-DS introduces virtualization of all the hardware of the parallel machine,
and of the network conditions. It provides the experimenter with a tool to design
a complex and realistic failure scenario, over arbitrary network topologies. To
the best of our knowledge, this is one of the first systems to virtualize all the
components of a parallel machine, and provide a network emulation that enables
experimenters to study low-level network protocols and their interactions with
failures.

9.1 V-DS Platform Description
The V-DS emulation environment is made up of two distinct components.

First, the virtualization of the hardware through the use of virtual machines and
then a BSD kernel module for the low-level network virtualization enabling the
emulation of grids on clusters. Each component will be described in the follow-
ing sections.
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9.1.1 Virtualization Environment for Large-scale
Distributed Systems

V-DS virtualizes distributed systems entities, at both operating and network
level. This is done by providing each virtual node with its proper and confined
operating system and execution environment.

V-DS virtualizes a full software environment for every distributed system
node. It allows the accurate folding of a distributed system up to 100 times larger
than the experimental infrastructure [82], typically a cluster.

V-DS supports three key requirements :

– Scalability : In order to provide insights on large-scale distributed sys-
tems, V-DS supports the folding of distributed systems. Indeed, thanks to
Xen characteristics, it is possible to incorporate a large number of virtual
machines on a single physical machine with a negligible overhead [5].

– Accuracy : In order to obtain accurate behavior of a large-scale distributed
system several constraints on the virtual machines (VMs) are needed. First
the CPU must be fairly shared between VMs, then each VM must be iso-
lated from the others, lastly the performance degradation of a VM must
evolve linearly with the growth of the number of VMs. Using Xen allows
V-DS to ensure all these requirements (see for example [82]).

– Adaptivity : the platform provides a custom and optimized view of the
physical infrastructure used. For instance, it is possible to support differ-
ent operating systems, and even different versions of the same operating
system.

V-DS is based on the Xen [5] virtualization tool in version 3.2. Xen gets
interesting configuration capabilities, particularly at the network level which is
fundamental in the injection of network topologies. Compared to other virtual-
ization technologies it has been demonstrated [82] that Xen offers better results.

Figure 9.1 shows the general architecture of V-DS. Here, m physical ma-
chines called PM − i running a Xen system are hosting n virtual machines
named VM − i− j with i the index of the physical machine hosting that virtual
machine and j the index of the virtual machine. Thus, there are n ∗ m virtual
machines (VM). All communications between these VM are routed to FreeBSD
machines to 1) prevent them from communicating directly through the internal
network if they are on the same physical machine, 2) add network topologies
between VM.
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FIGURE 9.1 – Overview of the architecture of V-DS.

9.1.2 Low-level Network Virtualization

One of the main advantages of the V-DS platform is that it also uses virtu-
alization techniques for emulating the network. This allows the experimenter to
emulate any kind of topology with various values for latency and bandwith on a
cluster. For instance, it is possible to run, in this framework, grid applications on
clusters.

For the purpose of emulating the network, we use FreeBSD machines. Using
BSD machines to virtualize the network is crucial to a reliable accurate network
simulation, since BSD contains several very efficient tools to manipulate pack-
ages like ipfw 1 or Dummynet[86]. With these packages it is possible to insert
failures (like packet dropping) in the network very easily. The platform is then
able to inject realistic failures at the machine and network level.

There are three networks joining the virtual machines. The first one is a clas-
sic ethernet network. Each virtual machine has its own ethernet card. The second
one uses Myrinet cards and provides very fast links between the nodes. The last

1. http://www.freebsd.org/doc/en/books/handbook/firewalls-ipfw.html
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one offers layer 2 virtualization using the EtherIP protocol [52]. EtherIP bridges
are set between any virtual machine and the corresponding BSD machine.

To set up the bridges, we use a topology file given by the user. The format
we use for the topology is the dot format 2 which is easy to manipulate and to
write. There are two different types of nodes for the topology. The Xen nodes
representing the virtual machines and the BSD nodes representing routers. The
dot language being very simple it is easy to generate well-known topologies such
as rings, cliques, etc. As the language is well-spread, there also exist graphical
tools to design specific topologies.

Using the topology file, we generate the routing table of each BSD machine.
The routing is made through a kernel module. More precisely it is a netgraph 3

node called “ip switch”. This node works with ipfw, allowing the user to filter
packets and to redirect them into a netgraph node. Here we filter all EtherIP
packets.

These packets are examined by the module who stores its routing table in a
kernel hash table. After modifying the IP header of the packet to correctly route
it to the next hop, the packet is put back on the network. The packet may also
enter a Dummynet rule before or after being rerouted. The module can also deal
with ARP (Address Resolution Protocol) requests in which case it will forward
the request to all its neighbors.

9.2 Experiments
In this section I present the experiments performed in order to assess the

performances and functionalities of the virtualization framework. All these ex-
periments were done on Grid’5000 [16]. Grid’5000 is a computer science project
dedicated to the study of grids, featuring 13 clusters, each with 58 to 342 PCs,
connected by the Renater French Education and Research Network. For these ex-
periments we used a 312-node homogeneous cluster composed of AMD Opteron
248 (2.2 GHz/1MB L2 cache) bi-processors running at 2GHz. Each node feature
20GB of swap and SATA hard drive. Nodes were interconnected by a Gigabit
Ethernet switch. All these experiments were performed using a folding ratio of
10 (e.g. each physical node runs 10 virtual machines).

All the following experiments ran under Xen version 3-2, with Linux-2.6.18.8
for the Physical and Virtual Computing nodes, and BSD version 7-0PRERELASE

2. http://www.graphviz.org/doc/info/lang.html

3. http://people.freebsd.org/~julian/netgraph.html
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Requested value Measured value - w/o NE Measured value - with NE
250 Mbps 241.5 Mbps 235 Mbps
25 Mbps 24.54 Mbps 23.30 Mbps

2.5 Mbps 2.44 Mbps 2.34 Mbps
256 Kbps 235.5 Kbps 235.5 Kbps

(a) Bandwidth restraint

Requested value Measured value - w/o NE Measured value - with NE
10 ms 10.1 ms 10.2 ms
50 ms 52.2 ms 52.1 ms

100 ms 100.2 ms 100.4 ms
500 ms 500.4 ms 500.8 ms

(b) Latency restraint

TABLE 9.1 – Respect of network restraint conforming measures

for the network emulation. Since we were embedding a Java virtual machine on
the Xen virtual machines we needed it to be light. We chose the 1.5.0 10-eval
version that fulfilled our needs and the space requirements.

9.2.1 Impact of the Low-Level Network Emulation
We first measured the impact of the network emulation of V-DS on the net-

work bandwidth and latency, using the netperf tool. To do this, we used two
version of V-DS : with network emulation at the high level only (when pack-
ets are slowed down by the router, but not encapsulated in an IP over ethernet
frame), and with low-level network emulation, as described in section 9.1.

The experimental setup consisted in three physical machines : one running
the BSD router, the other two running one virtual machine each. We configured
the BSD router to introduce restraints on the network, either using low-level
emulation with ethernet over IP, or without low-level emulation.

The results are summed up in table 9.1. The requested value represents the
restraint imposed by the experiment. In this table low-level network emulation
is denoted as NE.

Regarding the bandwidth, the obtained values are very close to the requested
ones, the difference being around 3% without the low-level network emulation.
This corresponds to the time spent in the crossing of the virtual layer. Netperf
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tests are realised at the TCP level, implying that part of the bandwidth is used
for the TCP protocol.

When adding the low-level network emulation the bandwidth drops again
for another 3%. This could be explained by the encapsulation needed by the
etherip protocol for a full network emulation. There is no significant difference
regarding the latency measures with the low-level emulation.

9.2.2 TCP Broken Connection Detection Mechanism
In these sets of experiments, we stress the broken connection detection mech-

anism implemented in the TCP stack. Many applications rely on TCP detection
mechanism to detect failures and implement their own fault-tolerance strategy,
thus the efficiency of TCP failure detection has a significant impact on the effi-
ciency of these applications. The failure detection mechanism of TCP relies on
heartbeats, under the so-called pull model [10] : one peer sends a heartbeat to
the other peer, and starts a timer ; when a peer receives a heartbeat, it will send
an acknowledgement back ; if the acknowledge returns before the expiration of
the timer, the sending peer assumes that the receiving peer is alive ; if the timer
expires before the reception of the acknowledge, the connection is broken.

This mechanism is controlled at the user level through BSD socket parame-
ters : SO KEEPALIVE enables the failure detection mechanism, which is tuned
through tcp keepalive time, tcp keepalive probes, and tcp keepalive intvl. First,
tcp keepalive time defines how long a socket can be without traffic before begin-
ning the heartbeat protocol ; tcp keepalive probes defines the number of heart-
beats that can be lost on a socket before the connection is considered broken ;
tcp keepalive intvl defines the maximum time to wait before considering that a
heartbeat has been lost.

To stress the failure detection mechanism of TCP, we designed three simple
synthetic benchmarks. They all assume a single pair of client/server processes
connected through TCP BSD sockets. In the first benchmark (Send), the client
sends messages continuously to the server without waiting for any answer. In
the second benchmark (Recv), the client awaits for a message from the server. In
the third (Dialog), the client and server are alternatively sending and receiving
messages to/from each other.

In all those experiments the server is killed or destroyed right after the con-
nection is established and we measure the elapsed time before the client realizes
the connection has been broken. We set the tcp keepalive time to 30 minutes, the
tcp keepalive probes to 9 and the tcp keepalive intvl to 75 seconds, which are
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the default on linux machines (except for the keepalive time, which was reduced
to lower the duration of the experiments). As a consequence, when a machine
crashes we expect the other side to notice the event within a period of approxi-
mately 41 minutes.

We then have two sets of experiments, one where the server process is killed
and one where the machine hosting the process is destroyed. Each set of experi-
ments includes the three benchmarks in both Java and ANSI C. Every benchmark
is run twice, once where the SO KEEPALIVE variable is on and once where it’s
off. The results are summed up in table 9.2.

Failure
Injection
Method

Language Socket Option Send Receive Dialog

Kill C - 0.2s 0.3s 0.2s
Kill Java - N/A N/A N/A
Destroy C SO KEEPALIVE 17min 41min 15min30s
Destroy Java SO KEEPALIVE ∞ 41min 15min30s
Destroy C 17min ∞ 15min30s
Destroy Java ∞ ∞ 15min30s

TABLE 9.2 – TCP failure detection times

In this table, the value ∞ means that after a long enough amount of time
(several hours) exceeding significantly the expected time of the failure detection
(41 minutes) the active computer has still not noticed that the connection has
been broken. The N/A value means that the language or the system does not
notify errors even if it detects a broken link. In the case of failure injection with
the Kill method, the socket option SO KEEPALIVE has no effect on the results.

When using the Kill failure injection method, one can see that the Linux
operating system detects the failure at the other end almost instantaneously. This
is due to the underlying TCP/IP protocol : the process is killed, but the operating
system continues to work, so it can send the RST packet to the living peer, which
will catch it and notify the process of a “failure”. For the Java virtual machine,
the socket is also notified as closed, but the language does not notify this closure
as a failure : the code also has to check continuously for the status of the Input
and Output streams, in order to detect that a stream was unexpectedly closed. In
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the JVM implementation used, no exceptions were raised when sending on such
a stream, and receptions gave null messages.

On the contrary, when using a more realistic destroy mechanism, the oper-
ating system of the “dead” peer is also destroyed. So, no mechanism sends a
message to the living peer to notify of this crash. The living peer must rely on
its own actions to detect failures, which is a more realistic behavior. We distin-
guish between the two cases when the SO KEEPALIVE option is either on or
not on the socket. In native Linux applications (ANSI C programs), the failure
is always detected when the SO KEEPALIVE option is on. TCP also uses the
communications induced by normal traffic to detect a potential failure, that is
why the detection time is lower for the Dialog and Send benchmarks.

In the case of the Recv benchmark, the living peer does not introduce com-
munication in the network, so the system has to rely on the heartbeat procedure,
which uses conservative values to detect the failure with a low chance of false
positives, and a small perturbation of the network.

It is clear from these experiments that crash injection through complete de-
struction of the virtual machine, including the operating system, exhibit more
accurate behavior than the simple destruction of a process, even using a forced
kill method, because the underlying operating system will clean up the allocated
resources, including the network resources.

9.2.3 Stress of Fault-Tolerant Applications
In order to evaluate the platform capabilities to inject failures, We stressed

FreePastry which is an open-source implementation in Java of Pastry [88, 19]
intended for deployment on the Internet. Pastry is a fault-tolerant peer-to-peer
protocol implementing distributed hash-tables. In Pastry every node has a unique
identifier which is 128 bits long.This identifier is used to position the node on a
2128-place oriented ring. A key is associated to any data, using a hash function,
and each process of identifier id < id′ (where id′ is the identifier of the next
process on the ring) holds all data with key k such that id ≤ k < id′. Then,
by comparing the process identifiers and data keys, any process can route any
message to a specific data. Shortcuts between nodes (called fingers in Pastry)
are established to ensure logarithmic time to locate a node holding any data from
any other node.

When a node is joining an existing ring, it gets a node id and initializes its
leaf set and routing table by finding a “close” node according to a proximity
metric. Then it asks this node to route a special message with its identifier as a
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key. The node at the end of the road is the one with the closest identifier and then
the new node takes its leaf set and its routing table is updated with information
gathered along the road. The new node will then send messages in the pastry
network to update the routing table of all processes it should be connected to.

Pastry manages nodes failures as nodes departures without notification. In
order to handle this kind of situation “neighbors” (nodes which are in each others
leaf set) exchange keepalive messages. If a node is still not responding after
a period T, it is declared failed and everyone in its leaf set is informed. The
routing table of all processes that the departing process was connected to are
then updated. This update procedure can take some time and is run during the
whole life of the distributed hash table. At some point in time, the routes stop
changing (they are stabilized), but the maintaining procedures for these routes
continue to execute.

In order to validate the platform we look at three things. First we evaluate the
average time for the system to stabilize itself after all the peers had joined the
network. Then we evaluate the average time needed for every node to know that
a node was shut down or killed. In the first case we only kill a java process and
in the second we “destroy” the virtual machine which is hosting the process.

The experiments go as follows. The first virtual machine (called the bootstrap
node) creates a new ring and then every other virtual machine connects to it. We
ask every node for its routing table every 200ms and log it whenever it changes
together with a time stamp.

In order not to overwhelm the bootstrap node, machines are launched by
groups of tens separated by a 1 second interval. The results for the first experi-
ment are presented in Fig. 9.2 below.

It can be seen that for even small rings, composed of as few as 50 machines
out of a possible 2128, the time for the system to stabilize is huge (over 5 hours).
This time increases with the numbers of machines and can still be over 18h for
a ring as small as 400 machines.

To reduce the duration of the experiments, we use the fact that a majority of
changes in the routing tables are made in the first few seconds of initialization.
It appears that after only 100s more than 50% of the changes have been made.
Thus we do not wait for the whole system to be stabilized before injecting the
first failure, but we only wait for the whole system to have made enough changes
in the routing tables and for it to be in a relatively steady state. The first failure
is injected 45min after the beginning of the experiment.

We call D-node the node suppressed from the ring, either by killing the pro-
cess or destroying the machine. After suppressing the D-node we wait for 20
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FIGURE 9.2 – Average number of changes left by machines

min for the nodes to update their routing tables. After this period we collect the
routing tables and look for those which include the D-node. In those particular
tables we search for the update that will make the D-node disappear from the
routing table.

Figure 9.3 presents the cases when we “destroy” the virtual host of the pro-
cess, and when we kill the process. Each dot in this figure represents the update
of the routing table of process y, at a time x, concerning the D-node. The circles
represent the modifications before the failure is injected, thus modifications due
to the normal stabilization of FreePastry. The squares represent the modifications
after the injection of the failure for the D-node in the case of process kill, and
the triangles in the case of virtual host destruction. The vertical line represents
the date of the failure injection at the D-node (45 minutes after the beginning).

The set of routing tables that include the D-node consists of 578 nodes over
several experiments. In this set many nodes delete the D-node of their routing
table before it is suppressed. As it can be seen on the figure, all these nodes do it
very early in the stabilization and therefore we can consider that every node that
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deletes the D-node from its table after the suppression time does it thanks to the
failure detection component of Pastry.

Since the routing table maintenance is done lazily in Pastry [20], it is nat-
ural that not every node updates its routing table, since in the experiments no
messages are exchanged.

When we only kill the pastry process to suppress the D-node after 45 minutes
it is possible to see on figure 9.3 that a lot of nodes react in a very short period
of time to the suppression of the D-node. Comparing the points distributions for
Kill and Destruction, one can see that nodes detect the failure in a shorter pe-
riod of time in the case of kill than in the case of destruction. Since behaviors
in the two cases is different one should consider that “destroying” a machine is
more accurate since the stressed application must rely on its own failure detec-
tion mechanism, and the behavior of this application may be influenced by the
asynchronism and the timings of the failure detection mechanism used. The fig-
ure also demonstrates that the active failure detection mechanism of FreePastry
is effective and the distributed hash table is able to stabilize even with accurate
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failure injection.

9.3 Conclusion
The platform V-DS helps the developer to eliminate bugs during the devel-

opment of his applications. He can stress his application at every level since he
possess a complete control over the environment.

This platform offers a total virtualization of machines and networks at both
high and low level. This allows the user to inject realistic faults into the system
to test its reaction and the fault-tolerance of the application.

Since the environment is totally harnessed, it is possible to log almost every-
thing that happens and to use this information as input for verification tools such
as APMC [48] or together with a fault injection tool like Fail [51] to reproduce
scenarios precisely.
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10
CONCLUSION

This thesis resolves several large-scale related issues. The large-scale sys-
tems addressed are various and cover huge data collection like the Web, sensor
networks with hundreds of thousands of nodes or clusters and grids applications.
The results are methods to fight social spam and Webspam, a new dissemination
data protocol for sensor networks and a testbed for large-scale applications.

10.1 Social spam
Chapter 4 presented a voting scheme for social news websites that prevent

spammers’ content to reach the front page. The method consists in the applica-
tion of statistical filters and a new algorithm to detect communities. Its imple-
mentation through a website was clearly a success, assessing the notions used in
its development.

10.2 Webspam demotion
In chapter 5, I presented a new method to compute a fairer ranking on search

engines. It is based on a clustering of the graph as a preprocessing step and
rank computed with only extra-cluster contributors. Fast and simple clustering
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techniques that uses only local information where introduced and one of them
can statistically make a difference between spam and nonspam pages.

It is now of interest to have a better look at the clustering produced by those
methods and if they are actually good approximate clustering methods.

10.3 Webspam detection
Another approach to minimize the influence of Webspam was developed with

the technique presented in chapter 6. It consists in identifying pages whose rank-
ing is supported by Webspam. The method is simple, it uses random walks and
their statistical projections introduced in [31].

Efforts should be made to define criteria to identify suspicious starting pages
to shorten the running time of the algorithm.

10.4 Supple
A new data dissemination scheme for wireless sensor networks is presented

in chapter 8. This scheme, called Supple, exchange much less messages than the
previous ones to attain the same performances. By using a tree topology over
the network that can be created with only local knowledge it is possible to use
driven random walks without distorting the distribution over the storing nodes.

10.5 V-ds
In chapter 9, I presented a new testbed for large-scale applications that allows

the user to inject accurate failures to test his applications. It virtualizes both the
machines and the network to offer a complete control over the environment to
the user. The validity of this platform was tested using network tools and a fault-
tolerant implementation of a distributed hash table called FreePastry.
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