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Abstract—Search engines results pages (SERPs) for a spe-
cific query are constructed according to several mechanisms.
One of them consists in ranking Web pages regarding their
importance, regardless of their semantic. Indeed, relevance to
a query is not enough to provide high quality results, and
popularity is used to arbitrate between equally relevant Web
pages. The most well-known algorithm that ranks Web pages
according to their popularity is the PageRank.

The term Webspam was coined to denotes Web pages created
with the only purpose of fooling ranking algorithms such as the
PageRank. Indeed, the goal of Webspam is to promote a target
page by increasing its rank. It is an important issue for Web
search engines to spot and discard Webspam to provide their
users with a non biased list of results. Webspam techniques are
evolving constantly to remain efficient but most of the time they
still consist in creating a specific linking architecture around
the target page to increase its rank.

In this paper we propose to study the effects of node
aggregation on the well-known ranking algorithm of Google
(the PageRank) in presence of Webspam. Our node aggregation
methods have the purpose to construct clusters of nodes that
are considered as a sole node in the PageRank computation.
Since the Web graph is way to big to apply classic clustering
techniques, we present four lightweight aggregation techniques
suitable for its size. Experimental results on the WEBSPAM-
UK2007 dataset show the interest of the approach, which is
moreover confirmed by statistical evidence.

I. INTRODUCTION

Search engines are designed to provide users with re-
sults of the finest quality, i.e. Web pages highly relevant
to the user’s query. To achieve this task, Web pages are
sorted with respect to their relevance towards the requests.
Unfortunately, the result of this sorting step can be fooled
since malicious webmasters (called spammers from now on)
have the ability to index and make Web pages relevant
to many (i.e. a really huge number of) requests. To avoid
large scale manipulation over the relevance of Web pages,
search engines use another metric to rank Web pages. This
metric is often based on some kind of pages’ popularity.
Popularity together with relevance are used to sort results
before presenting them to the users.

Nowadays it is really important for a website to have a
good visibility to ensure its popularity and to attract some
traffic. Being visible often means to be well ranked regarding
requests on Web search engines. Without any surprise a site

appearing on the first two result pages of Google will be
more visited than a site on the 100th page for the same
request.

It is also important for a website to drain a sufficient
amount of traffic since earnings on the Web is often pro-
portional to the number of visitors. This leads webmasters,
who wants to earn money on the Web, to take extra care of
their ranking on Web search engines.

There are not many actions a webmaster can do to increase
its relevance towards requests without quickly falling into
spamming. Plus improving its relevance has its limits, once
you are relevant towards the requests you’re interested in,
you will appear into the results list. Then you need to
improve your rank in the list.

The popularity is often based on a structural criterion.
Webmasters can improve their popularity by making some
publicity for their site. It means that they are trying to
achieve for other sites to “vote” for theirs in order to improve
its popularity. There is a lot of mechanisms that they can
use to ensure a high rank to their pages. Many of these
mechanisms depend on the targeted ranking algorithms.

As soon as a ranking algorithm is known people will ask
themselves how to maximize their score. This is also true
for the PageRank. This question has been resolved years
ago either for a single page by Gyongyi et al in [9] or for
a whole website by De Kerchove et al in [6].

Orthodox, but borderline, techniques designed to increase
the pagerank of some pages on the Web are regrouped under
the name of search engine optimization. Not far from search
engines optimizers (SEO) lie Web spammers. They are
people whose goal is to promote a page or a site, regardless
of the techniques used for that purpose. Many well-known
techniques like link farms are well spread amongst Web
spammers. These techniques evolve quickly making exact
automatic detection hard in practice.

The frontier between SEO and Webspam is thin but
creating a whole network of dull pages just to increase a
target page or site pagerank can clearly be seen as Webspam



(moreover, according to Google, it is Webspam1).
One of the major challenge for search engines nowadays

is the fight against Webspam. In order not to drive away
frequent users, the results should not be polluted by spam
pages. It is also important that Web pages are presented
respecting a fair ranking since users that do not use a specific
request may be more interested with genuinely popular
pages.

The main goal of this paper is to propose an approach
based on graph clustering to demote the effects of Web
spamming and show its efficiency. We present statistical
evidence of its viability at identifying Webspam in an
automatic way. Our approach does not need any human
assisted step.

This paper is an extended version of [14]. We propose in
this extended version an extra clustering technique together
with a complexity analysis of the four techniques. We also
strengthen the experiments by adding a new dataset that
contains more interesting nodes and that forces us to partly
reconsider the conclusion we made in the previous article
and a comparison to techniques presented in the Web spam
challenge 20082.

The following of this paper is organized as follows, in
section II we present work related to ours regarding Web-
spam detection and demotion. In section III we introduce
the lightweight clustering methods we chose to use in order
to demote Webspam. Section IV shows our experiments and
their results. In section V we present statistical evidence of
the viability of our approach. In section VI, we compare our
approach to existing detection techniques, we also discuss
the results we obtained on a peculiar subset of the dataset.
Finally we conclude in section VII.

II. RELATED WORK

Since the PageRank algorithm was introduced in [17],
and became famous through its use within the search engine
Google, Web spammers tried to figure out how to increase
their rank. The question of how to maximise the rank of
a target page has been answered in [9] where they also
proposed an analysis of the Webspam. If someone wants
to maximize the score of an entire Web site and not a single
Web page it has to use a more complicated linking structure
between the site pages. The optimal structure is described
in details in [6].

With the apparition of Webspam, many techniques were
developed to detect or demote the effects of Webspam in
order to ensure the user with a fair ranking. These measures
can be separated in three categories, demotion, detection and
prevention as stated in [12].

1It can be read in Google webmaster guidelines: “Don’t participate in
link schemes designed to increase your site’s ranking or PageRank. In
particular, avoid links to web spammers or ”bad neighborhoods” on the
web, as your own ranking may be affected adversely by those links”.

2http://webspam.lip6.fr

A first kind of measures to appear was the propagation
of Trust or Distrust proposed by Gyongyi et al. in [11][13].
Those methods need a human preprocessing step that help
to split a small subset of nodes between good (to be trusted)
nodes and bad (not to be trusted) nodes. Then starting from
the seeds, either the Trust is propagated or the Anti-Trust is
propagated backward.

Wu et al. propose in their paper [19] an improvement of
the TrustRank algorithm where topicality is considered to
increase the results. Their results outperform those given by
the TrustRank algorithm but the authors are using a human
powered preprocessing step, making the method difficult to
use in practice (even harder than the TrustRank).

Gyongyi et al. propose an other approach. They present
in [10] a framework where the fraction of pagerank coming
from spam pages is computed for each Web page. This again
requires a preprocessing human step where people label
pages as spam or nonspam. The estimation of the fraction
is calculated by evaluating the pagerank of each page when
the source of pagerank is a subgraph composed only of good
pages.

Ntoulas et al. present in [16] a classifier for Web pages
based on their content. They chose many criteria going from
the number of words in the title to the conditional n-grams
likelihood. Their classifier has a high precision and recall but
the problem is that the target page of spammers (that is the
page whose pagerank is boosted by unorthodox techniques)
is often a relevant page and thus falls out of the scope of the
method. Moreover, using the classifier on every Web page
is fastidious and not really tractable.

Abernethy et al. describe in [1] their method to identify
Webspam pages using both content and hyperlinks analysis.
Their algorithm, called WITCH, is based on machine learn-
ing and obtain really good results in differenciating spam
pages from nonspam ones.

Martinez-Romo et al. propose in [15] a method to identify
Webspam using Language Model Analysis. They compute
several metrics associated with the language of the page,
its title, the surrounding anchor text, etc. Then using a
Kullback-Leibler divergence they separate genuine pages
from the spam ones.

Finally, Benczur et al. (see the paper [3]) propose an fully
automatic method to detect Webspam. This method proceeds
by observing the distribution of suspected pages’ contribu-
tors. Web pages with a biased distribution are considered
spam.

All these methods fall into the scope of spam detection
since they attempt to identify Webspam pages in order to
reduce their influence. However, there is another way of
fighting Webspam. Indeed, one can consider methods with
a different goal: demoting the effects of Webspam without
necessary detecting it.

Andersen et al. propose in [2] an algorithm called Robust
PageRank. It is designed to fight link spam engineering.



They use the supporting sets of nodes (i.e. nodes contributing
to the pagerank of a specific Web page) regarding the
pagerank computation. They locally compute approximate
features in order to demote the effects of Webspam. For
instance, they examine the size of a node’s supporting sets
and the approximate l2 norm of the PageRank contributions
from other nodes.

Lu et al. prove in [18] that computing the PageRank
using nonlinear coefficients regarding the correlation that
may exists between links pointing to the same page. This
could be use to reduce the importance of spam pages created
to artificially increase the weight of the target page.

Chung et al. (see the paper [5]) have made a study of
link farms during a period of two years to see how their
distributions and compositions are evolving. They use the
Strongly Connected Component (SCC) decomposition to
find and study such link farms. Tarjan’s algorithm complex-
ity is O(n + m) where n is the number of nodes of the
graph and m the number of edges. This is a good theoretical
complexity but still too high to be used to fight Webspam
since the algorithm should be iterated to find link farms (the
graph is too large to be the input of an algorithm of this
complexity). But the idea of clustering the graph to identify
link farms is of the utmost interest. It is important to find a
faster way to regroup nodes, this is the problem we address
in this paper.

III. CLUSTERING METHODS

In this section we present the four graph clustering
techniques we used in our experiments. First, it is important
to notice that classical and efficient clustering methods for
small graphs such as the Markov Cluster Algorithm (MCL,
see [7]) and the edge betweenness clustering method (EBC,
see [8]) are unsuitable for the web graph because of its size.
Indeed MCL requires an explicit matrix representation of the
graph which is totally infeasible in our case and EBC runs in
time and space of O(nm) where n is the number of nodes
in the graph and m the number of edges (these notations
will be kept throughout the paper), which is in practice
totally intractable. Moreover we are not interested in an exact
clustering. Our interest is not the detection of Webspam but
its demotion. If we can group enough Webspam with the
target page, building big enough communities, we hope to
stop a sufficient amount of incoming pagerank to nullify the
Webspam’s effects.

Google has indexed more than 1000 billion pages3. So
every technique must have a low complexity, i.e linear at
maximum. Indeed the PageRank has a linear complexity
O(n + m). Since the PageRank must be calculated to
offer a ranking to users, every method which purpose is to
demote the effect of Webspam must add at most a constant
amount of calculation to be effective. The ideal case would

3http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

be a method that could be embedded with the PageRank
computation with only a constant overhead and no memory
usage.

All four methods we present below are local algorithms
computed for every node in the graph. The idea is always to
have a very simple criterion to group nodes together, starting
from a peculiar node. It is also important to use only local
knowledge to compute our clusters.

Fig. 1 shows example of how nodes are regrouped for
each method. The red node labelled S is the starting point
of the algorithm and the blue nodes are the ones regrouped
with it after the computation.

The first method we propose is very intuitive. We only
want to group nodes with one outgoing link with the target
of this link (see Fig. 1(a)). This means that we group people
that give all their pagerank to one person with this person.
A well-known technique to raise the pagerank of one page
is to create a lot of dummy pages that will give all their
pagerank to the target page. In the following this method
will be referred to as Tech1. Note that it can be embedded
for free during the computation of PageRank.

The second technique we want to test regroup nodes that
belongs to short loops in the graph. In Fig. 1(b) the length
of the loop is 4. For every node in the graph we compute
every path of length k and if the path ends on the starting
node then everybody in the loop goes in the same cluster.
We know that spammers don’t like to waste pagerank, thus
many links coming out the target page should return to the
target page in a few steps. In the experiments we chose to
use a length k = 3. In the rest of this paper this method will
be called Tech2.

For the third method we simply launch r random walks
of length l from every node in the graph. If the number
of random walks that ends on a particular node is higher
than a threshold t then this node and the starting node are
regrouped in the same cluster. With this approach we hope to
regroup Webspam with their target page even if some links
may lead elsewhere to avoid automatic detection of well
known structures. Following links from a Webspam page
will lead to the target page with high probability. Later in
the article this technique will be named Tech3. During our
experiments we launched 200 random walks of length 15.
The threshold was fixed at 40 meaning that more than 1/5 of
the walks must end on the same node for it to be regrouped
with the starting node.

This threshold was chosen independently from the random
walk length, we just wanted a number high enough to be
suspicious. There exists a relationship between the best
threshold and the length of the random walk but it implies
some knowledge on the mixing time of the random walks,
which we do not possess. It seems possible to compute this
piece of information for some particular link farms, but it
is not of interest here since we want our technique to be
as general as possible to remain efficient while cheater’s



S

(a) Tech1: group nodes with one out-
going link

S

(b) Tech2: group nodes belonging to
small loops

S

(c) Tech3: group nodes reached too often as ending
point of RWs

S

(d) Tech4: group nodes leading to popular ending
points of RWs

Figure 1. Lightweight clustering techniques grouping blue nodes with the starting point (red node labelled S)

techniques evolve.
At last, the forth technique is very similar to Tech3. It

is based on the same principle, i.e. launching short random
walks, but we group all nodes that lead to the often touched
target with the starting point. This method creates bigger
groups than the previous since for the same random walks,
much more nodes will end up in the same clusters. We
think it will merge close clusters that should belong together.
This method is illustrated in Fig.1(d), where all nodes in the
random walk leading from the starting node to the top left
node are regrouped together.

More formally at the beginning of each algorithm every
node belongs to its own cluster. When we regroup nodes we
simply merge their clusters following the expression “Any
friend of yours is a friend of mine”. This has no impact if
the starting point of the algorithm has no neighbors in the
cluster of the node it wants to regroup with but, on the other
hand if it wants to regroup with someone who is very close
to one of its successors the starting node probably wants to
associate itself with that particular neighbor. Thus two nodes
can end up in the same cluster even if the method did not
explicitly regroup them.

A. Complexity analysis

We will now analyse the complexity of all the methods
presented above. The complexity of Tech1 noted C(T1) is

obviously linear in the number of nodes of the graph since
it only does one comparison by node, thus C(T1) = Θ(n).

In order to compute the global complexity of Tech2
(C(T2)), we will first look at the complexity of Tech2 for
the node i (Ci(T2)).

Ci(T2) = 1 + |d+i |+
∑
j∈d+

i

(|d+j |+
∑
l∈d+

j

(|d+l |+ . . .

︸ ︷︷ ︸
k−1 steps

where d+i represents the neighbors of node i and thus |d+i |
the outdegree of node i. With this number of operations we
can only establish that one step of the algorithm may run
in time O(n + m) since one node may be able to reach
all the nodes in the graph within k steps. This assumption
is obviously false for the Web graph and a small value of
k < 10.



Let’s take dmax = maxi |d+i |. We then have,

Ci(T2) ≤ dmax +

dmax∑
j=1

(dmax +

dmax∑
l=1

(dmax + . . .︸ ︷︷ ︸
k−1 steps

≤
k∑

j=0

djmax

≤ dk+1
max − 1

dmax − 1

= O(dkmax)

It is a fair assumption that dmax is a constant independent
from the size of the graph. However one can set the
value dmax, and not consider nodes i with an outdegree
|d+i | > dmax during the computation. Regarding the global
complexity of Tech2,

C(T2) =
∑
i

Ci(T2)

= O(n× dkmax)

The complexity of the last two methods is linear in the
number of nodes since the operations made by each node
are random walks of fixed length. Indeed the complexity of
Tech3 for node i is,

Ci(T3) = O(r × l)

time required to launch r random walks of length l the
O(r × l) is here for the postprocessing of the random
walks that requires O(r) steps: finding stop nodes above the
threshold and regroup them with the starting point. Thus the
total complexity of Tech3 is,

C(T3) = O(n× r × l)

The complexity of Tech4 for a node i is the same
as Tech3’s since is it also based on random walks. The
postprocessing is a bit greater but is still in O(r× l) leading
to the following global complexity,

C(T4) = O(n× r × l)

It is important to notice here that since r and l are
small constant, the last two techniques achieve a good
complexity but Tech2 may take some time for nodes with
high outdegrees. While having a linear complexity in terms
of nodes, the constant dmax is huge so the technique may
be a bit longer than the others.

IV. EXPERIMENTS

We present in this section experiments that have been
conducted on the dataset WEBSPAM-UK20074. This dataset
is a crawl of the .uk domain made in May 2007. It is
composed of 105 896 555 nodes. These nodes belong to
114 529 hosts and 6 478 of these hosts have been tagged.
Please pay attention to the fact that hosts are tagged, not
pages (e.g. entire domains instead of peculiar pages). We
use the Webgraph [4] version of the dataset by Boldi and
Vigna since it allows to manipulate huge graphs without
using a lot of memory.

The tagged hostnames are separated in 3 user-evaluated
categories: spam (690 972 nodes), nonspam (5 314 671
nodes) and undecided (201 205 nodes). Using this informa-
tion we can construct 3 sets of web pages corresponding to
the 3 categories. We also add another set to the three existing
ones. We call it spammed and it is constituted of all pages
at a maximum distance of 1 step from the set spam while
not belonging to spam. It is composed of 49 193 nodes. But
the intersection of this new set with the nonspam set is non
empty. Thus we withdraw all nodes in this intersection from
the spammed set. After that operation, it remains 48 164
nodes left in this set. Thus one should keep in mind that it
may still be suspicious nodes in the nonspam set.

We first evaluate the pagerank of each node of our dataset.
Then we sort each set spam, nonspam, undecided and
spammed in decreasing pagerank value.

Then we apply each technique to the graph before com-
puting a special version of the pagerank where i contributes
to the pagerank of j iff i → j and i and j are in separate
clusters. The contribution Cij of i to j is the following:
Cij = Pr(i)

ki
where ki = |{j|i → j, cl(i) 6= cl(j)}| and

Pr(i) is the pagerank of page i. This is the same as running
the PageRank on a graph where all intra clusters edges have
been removed. Results can be found in Tab. I. We do not use
the normalized version of the PageRank where they all add
up to 1 since we make the computation over a huge graph
and don’t want to be limited by the machine precision. All
‰ in Tab. I don’t add up to one since we consider only a
fraction (∼ 5.91%) of all pages (the tagged web pages plus
the spammed set). It can be seen in this table that every
method make the pagerank of all four sets drop. This is
easily understandable. Since many edges are removed from
the graph, the pagerank can not spread as easily.

Tech1 reduces the whole pagerank of the graph of ∼ 18%,
Tech2 reduces it by almost 43%, Tech3 by ∼ 10% and Tech4
by ∼ 27%. These are the average demotions we register on
the whole graph for each technique. The average demotion
depends on the number of clusters made by the algorithm

4Yahoo! Research: ”Web Spam Collections”.
http://barcelona.research.yahoo.net/webspam/datasets/ Crawled by the Lab-
oratory of Web Algorithmics, University of Milan, http://law.dsi.unimi.it/.
URLs retrieved 05 2007.



Webgraph spam nonspam undecided spammed
value ‰ value ‰ value ‰ value ‰

PageRank 84 015 567.786 517 546.3795 6.16 4 230 292.491 50.35 167 809.751 2 876 574.001 10.43
Tech1 68 943 484.072 422 932.8076 6.13 3 449 440.644 50.03 141 221.9441 2.05 627 889.2 9.11
Tech2 48 431 264.361 294 940.5303 6.09 2 323 473.016 47.97 97 550.25296 2.01 821 191.761 16.96
Tech3 75 176 329.382 461 598.8212 6.14 3 809 062.589 50.67 150 273.0357 2.00 807 620.526 10.74
Tech4 62 371 681.151 350 894.3076 5.63 3 178 787.526 50.97 109 720.224 1.76 626 092.777 10.04

Table I
PAGERANKS OF EACH SET

20% 30%
Total Intersection Total Intersection

Nombre Score Nombre Score Nombre Score Nombre Score
PageRank 56 104 580 46 89 726 186 155 798 147 128 351
Tech1 66 85 451.5 46 74 794.4 210 127 193 147 111 833
PageRank 56 104 580 36 87 877.8 186 155 798 142 136 765
Tech2 49 59 648.9 36 42 502.1 203 88 731 142 63 700.1
PageRank 56 104 580 52 99 496 186 155 798 161 143 803
Tech3 65 92 937.9 52 84 089.2 189 138 824 161 128 264
Pagerank 56 104 580 43 70 442.7 186 155 798 129 127 187
Tech4 122 70 712.6 43 37 777.6 343 105 399 129 70 212.1

Table II
EFFECTS OF DIFFERENTS TESTS ON SPAM TAGGED PAGES

20% 30%
Total Intersection Total Intersection

Nombre Score Nombre Score Nombre Score Nombre Score
PageRank 958 846 644 799 699 145 2 433 1 269 460 1 901 1 062 620
Tech1 1 049 690 274 799 596 293 2 776 1 035 060 1 901 892 642
PageRank 958 846 644 312 389 323 2 433 1 269 460 1 030 745 638
Tech2 538 465 120 312 331 698 1 605 697 270 1 030 547 989
PageRank 958 846 644 763 714 624 2 433 1 269 460 2 028 1 087 260
Tech3 830 762 651 763 728 457 2 166 1 142 930 2 028 1 102 770
Pagerank 958 846 644 510 506 426 2 433 1 269 460 1 381 803 932
Tech4 859 636 190 510 452 925 2 289 953 812 1 381 704 729

Table III
EFFECTS OF DIFFERENTS TESTS ON NONSPAM TAGGED PAGES

20% 30%
Total Intersection Total Intersection

Nombre Score Nombre Score Nombre Score Nombre Score
PageRank 49 34 156.5 42 29 705.4 109 50 569.9 96 45 923.6
Tech1 48 28 748.5 42 26 154.3 118 42 566.2 96 39 577.6
PageRank 49 34 156.5 16 13 851.7 109 50 569.9 49 31 952.9
Tech2 23 19 875.7 16 14 271.6 66 29 427.1 49 25 522.6
PageRank 49 34 156.5 38 27 011.7 109 50 569.9 85 41 865.5
Tech3 45 30 774.8 38 26 741.8 111 45 230.8 85 41 002
Pagerank 49 34 156.5 32 20 373.9 109 50 569.9 57 28 535.1
Tech4 40 22 432.6 32 18 868.7 151 32 987.8 57 25 397.6

Table IV
EFFECTS OF DIFFERENTS TESTS ON UNDECIDED TAGGED PAGES

and their sizes. The more and the bigger the clusters are,
the lower will be the sum of all pageranks since only
inter-cluster edges are accounted for in our version of the
PageRank algorithm. Then if we simply make the difference
between the real and the inter-cluster pagerank, almost every

will be demoted. Thus for a page to be considered demoted,
its particular demotion should be greater than the average
one observed on the whole graph otherwise it would be
considered promoted.

We can see that proportions of each set is mostly respected



20% 30%
Total Intersection Total Intersection

Nombre Score Nombre Score Nombre Score Nombre Score
PageRank 25 180 934 15 102 508 52 265 760 42 214 739
Tech1 29 129 179 15 81 326.8 63 191 141 42 152 871
PageRank 25 180 934 10 82 071.1 52 265 760 21 127 917
Tech2 12 176 016 10 145 938 27 251 537 21 210 996
PageRank 25 180 934 18 125 471 52 265 76O 38 191 167
Tech3 24 166 107 18 137 336 51 244 962 38 205 899
Pagerank 25 180 934 13 98 269.6 52 265 760 32 169 028
Tech4 24 129 895 13 83 338.5 52 190 841 32 142 621

Table V
EFFECTS OF DIFFERENTS TESTS ON SPAM LINKED PAGES

using whatever technique expect for the spammed set. Tech1
slightly reduces this set’s importance, Tech3 and Tech4
do not really alter the mass of the spammed pages but
Tech2 increases the importance of those pages by more than
60%. Those results are not precise enough to draw some
conclusions and we need to look at each set in depth.

Let’s take a closer look on the results. We focus on nodes
with a proportionately high pagerank (nodes well ranked).
We will concentrate our analysis on the first 20% (resp.
30%) of each set, meaning nodes representing 20% (resp.
30%) of the set pagerank. Tabs. II, III, IV and V represent
for each technique the number of nodes and score for the
whole 20 (resp 30) top percent of each set and the number
of nodes and score for the intersection with the 20 (resp 30)
top percent of the pagerank of the set. We want to ensure
that the demotion observed at the whole graph level is not
uniformly distributed amongst all nodes.

Tab. II presents the results for the spam set. Regarding
the top 20% of this set we can see that for Tech1, Tech3
and Tech4 there are more nodes in this top 20 than for the
PageRank meaning that each node is weaker. In the case of
Tech4 it more than doubles the number of nodes in the top
20%. There are fewer nodes for the Tech2.

Looking at the intersection of each set we can observe
that Tech1 demotes the intersection’s pagerank by less than
17% which is less than the general demotion registered for
this method. Tech2 demotes the pagerank by more than 51%
which is better than the general reduction meaning that this
spam is actually demoted. Tech3 performs a demotion of
almost 15.5% on the intersection which is also better than
the general demotion on the whole graph. Tech4 reduces
the spam pages in the intersection’s pagerank by more than
47% which is way more than the average demotion for this
technique. Spam pages are hence strongly demoted by this
technique.

On the top 30% of the spam set, Tech2 improves its
results up to a 53% demotion more than 10 points above
the average demotion. Tech1 results worsen to almost 13%
and Tech3 efficiency falls to the average demotion. Tech4
demotion remains almost the same at just less than 46%.

This demotion is again almost 20% higher than the average
one proving the efficiency of this approach.

Now let us focus on the intersections for the 30 top per-
cent. It is interesting for us to have big enough intersection
in this case to be sure that strong demoted spam nodes are
not replaced by stronger promoted spam nodes. The size
of all intersections combined with the fraction of the set’s
pagerank they represent allow us to be sure that it is the
case.

We can see in this table that only the first method fails at
demoting spam pages. Indeed it has at tendency at increasing
the pagerank of already highly ranked spam pages.

Tab. III shows the results for the nonspam set. It is
important here to confirm the good results obtained by
Tech2, Tech3 and Tech4.

We first study the results of Tech1. We observe that it
has more pages in both top 20 and top 30 percent of the
nonspam set. This shows that those pages are weaker and
hence demoted. For the top 20% (resp. 30%), Tech1 demotes
the intersection by 14.7% (resp. 16%) which represents a
small promotion compared to the general demotion. The
score on the top 30% is actually worse than the one for
the top 30% of spam pages.

Tech2 has the smallest number of pages composing the
top 20 and 30 percent of the nonspam set. This means that
the pages are stronger after the application of this method
than before. Tech2 demotes the intersection of the top 20%
(resp. 30%) by 14.8% (resp. 26.5%) which is way less than
the average demotion on the whole graph. This means that
these nonspam pages are promoted compared to the rest of
the graph.

Tech3 also has a smaller number of pages than the
PageRank in its top 20 and 30 percent for the nonspam set
ensuring that those pages have a higher pagerank on average.
On this particular set, Tech3 realises negatives demotions
i.e. promotions of respectively almost 2% for the top 20%
and ∼ 1, 43% for the top 30%. These of course are better
results than those observed on the whole graph since albeit
the general graph lost some pagerank, those particular pages
gained some.



Finally, Tech4, while having a bigger number of nodes in
its top 20% of the nonspam pages, demotes those pages
by only 11.56% which is actually a promotion of 15%
compared to the average demotion. On the top 30%, this
technique continues to perform well since it promotes the
intersection of the top 30% by more than 10%.

Looking at the intersections we can see that Tech1 and
Tech3 have large enough intersections but that Tech2 has a
smaller one compared to its intersection on the spam set.
This is of less harm here since we are less concerned about
the promotion of nonspam nodes but we would like to keep
the same sorting as the PageRank as much as possible. The
size of this intersection can be explained by the fact that
at the top level the fraction of pagerank represented by the
nonspam set after Tech2 has been applied is smaller than the
one of the PageRank, meaning that some important nodes
have been demoted since the number of nodes is the same.
We are allowed to think then that the ranking of Tech2 may
preserve an important part of the PageRank ranking on the
nonspam set.

Tech3 outperforms Tech2 and Tech4 on this table but it
was the contrary on the spam table. It is of interest to see
how they can be ranked and if the undecided and spammed
sets can be helpful to do that.

Tab. IV concerns the undecided set. This set is the
one that contains the least relevant information since pages
contained in this set were not clearly identified as either
spam or nonspam pages.

Our first method continues to produce the same effect
previously seen on the first two sets. Meaning the demotion
observed on the top 20% (resp. 30%) is ∼ 12% (resp.
13.8%), being inferior to the average demotion. We can then
conclude that this technique slightly increase the pagerank
of already highly ranked pages and demotes poorly ranked
ones.

Tech2 promotes the top 20% intersection of the undecided
set by more than 3% but if we consider the top 30% there
actually is a demotion of 20% which is less than the average
observed on the whole graph.

Tech3 practically does not touch to the pagerank of
undecided nodes. The registered demotions for the top 20
and 30 percent are respectively of 1% and 2%. These results
are again way above the average results of this method.

Tech4 slightly demotes the pagerank of the top 20 and
30% but less than the ones in the nonspam set. It means
that those pages get a better promotion than the nonspam
ones.

The results obtained by Tech2, Tech3 and Tech4 could be
explained by the fact that these sites are borderline. it means
that some may be spam while other are nonspam nodes.
Thus, some nodes use the techniques tracked by our methods
while others don’t. This is clearly visible for Tech2 where
we have a promotion on the top 20% but a demotion on the
top 30%. Moreover we can see that the number of pages

Subset of spammed
Value %

PageRank 18 645.802 100
Tech1 14 867.013 79,73
Tech2 10 269.059 55.08
Tech3 19 705.154 105.69
Tech4 12 963.077 69.53

Table VI
PAGERANK RESULTS FOR THE SPAMMED SUBSET OF NODES

CONNECTED TO SPAM.

Demotion Promotion TotalO E O E
nonspam 458 488.63 572 541.37 1030
spam 98 67.37 44 74.63 142
Total 556 616 1172

Table VII
VALUES O(BTAINED) AND E(XPECTED) FOR TECH2

almost triple between the top 20 and 30 percent meaning
that there is a gap in pagerank.

Tab. V deals with the spammed set. Since those pages
where linked by the spam set, it is our assumption that they
benefit from the Webspam and hence should be demoted by
our techniques.

Looking at the table, we see that our techniques behave on
this set like on the nonspam one. Indeed, on this set Tech1
is the only one that demotes the pagerank of those pages.
Tech2 and Tech3 realizes absolute promotions on the top
of those pages while Tech4 relatively promotes them. This
is not the attended results. It is possible that spam pages
make some outlinks to genuine strong pages. In that case
it is natural that our techniques favor them. We want to be
sure that those promoted pages are only connected to the
spam set one-way.

In order to confirm our impression, let us focus on a subset
of the spammed pages. We will concentrate on pages linked
from the spam set that link back. Results are presented in
Tab. VI.

We can see that on those particular nodes, except for
Tech3, that promote those pages, all other techniques demote
those pages tightly connected to the spam set. We will
further discuss about the spammed set in section VI.

Analysing the effects of our 4 approaches on the spam,
nonspam, undecided and spammed sets made us realise
that Tech1 is not helpful but that Tech2, Tech3 and Tech4
succeeded in demoting the effects of Webspam while pro-
moting honest pages. Tech4 outperforms both Tech2 and
Tech3 concerning the demotion of Webspam and vice versa
regarding nonspam promotion. In the next section we will
use statistical tools to check whether these techniques are
significantly efficient.



Demotion Promotion TotalO E O E
nonspam 86 86.16 1942 1941.84 2028
spam 7 6.84 154 154.16 161
Total 93 2096 2189

Table VIII
VALUES O(BTAINED) AND E(XPECTED) FOR TECH3

Demotion Promotion TotalO E O E
nonspam 174 179.26 1 207 1 201.74 1 381
spam 22 16.74 107 112.26 129
Total 196 1 314 1 510

Table IX
VALUES O(BTAINED) AND E(XPECTED) FOR TECH4

V. STATISTICAL TEST

In this section, we are looking for statistical evidence of
the efficiency of our methods to ensure that they are more
than just working heuristics. We saw that Tech2, Tech3 and
Tech4 have different effects on pages based on their set
of origin. We want to make sure that it is not just a huge
coincidence but that it is in fact our methods that effectively
help to separate Web pages. We will use a χ2 independence
test to verify that fact.

Here we are only interested in pages with high pagerank
before and after the computation of one of our method on the
graph. We want to see how these pages are treated by our
last three techniques. We make two categories, pages that
are demoted (meaning their particular demotion is greater
than the average one) and pages that are promoted (their
particular demotion is either negative or less or equal to the
average one). Since we are only interested in pages with high
pageranks, our sample for each set will be the top 30%.

The hypothesis H0 we want to test is that both spam and
nonspam pages share the same distribution.

The values Vij for each set and each category can be
found in Tab. VII for Tech2, Tab. VIII for Tech3 and Tab. IX

Demotion Promotion Total
nonspam 1.92 1.73 3.65
spam 13.93 12.57 26.51
Total 15.85 14.31 30.16

Table X
χ2 VALUES FOR TECH2

Demotion Promotion Total
nonspam 0.15 0.02 0.17
spam 1.65 0.25 1.9
Total 1.8 0.27 2.07

Table XI
χ2 VALUES FOR TECH4

for Tech4. All categories fill the minimum requirements for
the χ2 test. These tables also show the expected values
calculated with the following formula:

Eij =
Si∗ ∗ S∗j
S∗∗

where Si∗ is the sum of the ith line S∗j the sum of the jth

column and S∗∗ the sum over the lines and columns.
Finally the χ2 value for all tests can be found in Tabs X

for Tech2 and XI for Tech4. Since this χ2 test is made
over 2 categories and 2 sets of values, the critical value to
exceed is 3.84 if we want to reject the hypothesis H0 with
a probability of error of 5%. The χ2 value is calculated
according to the following formula:

χ2 =
∑
i,j

χ2
ij where χ2

ij =
(Vij − Eij)

2

Eij

The χ2 value obtained for Tech2 is 30.16 meaning that
we can reject the hypothesis H0 with at most 0.5% chances
to be wrong. Thus it can be stated that spam and nonspam
pages do not share the same distribution in this case i.e
Tech2 effectively separates spam pages from nonspam ones.

Looking at the above formula and the values in Tab. VIII,
the score for Tech3 is easy to compute and leaves no doubt,
0 meaning that the two samples share the same distribution.
As well as it seems to work in practice, there is no statistical
evidence that Tech3 may able to tell the difference between
spam pages and nonspam ones.

The χ2 value for Tech4 is 2.07. We can reject H0

with a probability of being wrong of 15%. It is only a
weak evidence that Tech4 effectively makes the difference
between spam an nonspam pages. Still it is promising for
Tech4 with just a bit of refining the technique we should be
able to obtain the statistical evidence we look for.

We were only able to show strong statistical evidence
for the good behaviour of Tech2, leaving us with Tech3
just as an heuristic that seems to work and Tech4 that
looks promising but probably requires a better tuning of its
parameters since the χ2 test was not conclusive enough.

VI. COMPARAISON & DISCUSSION

In this section we will compare the results of our approach
to other detection approaches on the same dataset. It is in fact
a popular dataset that was used for the Web spam challenge
20085. All the participants in this challenge used machine
learning based techniques and their objective is to identify
Webspam pages. We cannot directly compare our approach
to those in this challenge since we have different objectives,
theirs is to detect Webspam while ours is to minimize its
influence.

5http://webspam.lip6.fr
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Figure 2. ROC curves for all four techniques

In order to compare our methods to those presented at the
challenge, we will assume that their detection capabilities are
uniformly distributed regarding the pagerank of said pages.
All methods are classifiers that give a score in [0, 1] to all
pages. Any page whose score is strictly higher than 0.5 is
considered spam while any page receiving a score strictly
lower than 0.5 is considered nonspam. All pages with a score
equal to 0.5 are not considered for the evaluation.

The only information we possess about our pages is
the value of their demotion or promotion by a particular
technique. For each page i we define the relative effect of
technique k as Rek(i) s.a

Rek(i) ∈ [−d, p]
Rek(i) < 0 Page i was demoted
Rek(i) > 0 Page i was promoted

where −d is the maximum relative demotion, p is the
maximum relative promotion. Then the classification score
given by Techk to page i is,

Csk(i) = −Rek(i)−m
2 ·m

where m = max(d, p). This value fulfills all the require-
ments for classification, Csk(i) ∈ [0, 1],∀i, Csk(i) > 0.5
(demotion) page i is called spam and Csk(i) < 0.5 (promo-
tion) page i is called nonspam.

The metric use to rank the different methods is the Area
Under the ROC Curve (AUC). This quantity is equal to the
probability that a spam page will receive a higher score by
the classifier than a nonspam page. Fig. 2 presents the ROC
curves for all techniques together with their AUC. We can
see on this figure that the only technique that behave well
according to the AUC is Tech2 with a score of 0.65. This is
far from the score of the 6 contestants of the Web challenge
2008 whose results6 are between 0.73 and 0.85. But one

6http://webspam.lip6.fr/wiki/pmwiki.php?n=Main.PhaseIIIResults

should remember that those techniques use machine learning
and were specifically trained on this set while the parameters
in our techniques were not tuned. We cannot hope to achieve
the same quality of results using only heuristics, that is why
the results obtained by Tech2 are satisfying and prove the
interest of lightweight approaches for Webspam demotion.

In this section we also discuss the results our techniques
obtained on the spammed set. This set should contain pages
possessed by spammers since it is unlikely that a spammer
will make an outlink to a page that is not his. The difference
of behavior may be caused by the fact that spammers also
possess genuine pages and use mixed techniques to increase
their target page pagerank.

Since we possess statistical evidence for the good behav-
ior of Tech2 we should be able to use it as a reference
regarding the nature of the pages in this set. It seems from
the results presented in Tab. V that the top pages of this set
are genuine and use genuine techniques to obtain their high
pagerank since Tech2 promotes those pages. While focusing
on the pages that link back to the spam set, Tech2 demotes
them. Thus its behavior is coherent and we misjudged the
content of spammed set. Indeed it appears it contains many
genuine pages despite the way it was constructed.

VII. CONCLUSION

In this paper we have presented different clustering meth-
ods for the demotion of the effects of Webspam on the
PageRank algorithm. All four approximate methods are fast
to compute and need only a small amount of memory. Tech2,
Tech3 and Tech4 based respectively on the identification of
small circuits in the graph and random walks, are shown to
have good results on Webspam demotion.

Moreover, for the method Tech2, we have strong statistical
evidence that it can separate spam and nonspam nodes. The
complexity of this method is O(n). Thus this fully automatic
method could be effectively added to the already existing
arsenal for the Webspam detection and demotion of a search
engine. When compared to the best detection methods on
the same dataset, Tech2 performs a little worse but does not
require any learning phase thus having really encouraging
results. It is still of interest to investigate other methods to
perform approximate clustering on the Web graph.

Since Tech3 and Tech4 show promising results, it is
interesting to look further on how the tuning of their
parameter may influence the obtained results. In particular,
the length of the random walk should be analyzed in more
depth together with the interest of having random walks with
different length during the computation.
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